The RFC Archive
 The RFC Archive   RFC 8996   « Jump to any RFC number directly 
 RFC Home
Full RFC Index
Recent RFCs
RFC Standards
Best Current Practice
RFC Errata
1 April RFC



IETF RFC 8996



Last modified on Tuesday, March 23rd, 2021

Permanent link to RFC 8996
Search GitHub Wiki for RFC 8996
Show other RFCs mentioning RFC 8996





Internet Engineering Task Force (IETF)                       K. Moriarty
Request for Comments: 8996                                           CIS
BCP: 195                                                      S. Farrell
Obsoletes: 5469, 7507                             Trinity College Dublin
Updates: 3261, 3329, 3436, 3470, 3501, 3552,                  March 2021
         3568, 3656, 3749, 3767, 3856, 3871,                            
         3887, 3903, 3943, 3983, 4097, 4111,                            
         4162, 4168, 4217, 4235, 4261, 4279,                            
         4497, 4513, 4531, 4540, 4582, 4616,                            
         4642, 4680, 4681, 4712, 4732, 4743,                            
         4744, 4785, 4791, 4823, 4851, 4964,                            
         4975, 4976, 4992, 5018, 5019, 5023,                            
         5024, 5049, 5054, 5091, 5158, 5216,                            
         5238, 5263, 5281, 5364, 5415, 5422,                            
         5456, 5734, 5878, 5953, 6012, 6042,                            
         6083, 6084, 6176, 6347, 6353, 6367,                            
         6460, 6614, 6739, 6749, 6750, 7030,                            
         7465, 7525, 7562, 7568, 8261, 8422                             
Category: Best Current Practice                                       
ISSN: 2070-1721


                    Deprecating TLS 1.0 and TLS 1.1

 Abstract

   This document formally deprecates Transport Layer Security (TLS)
   versions 1.0 (RFC 2246) and 1.1 (RFC 4346).  Accordingly, those
   documents have been moved to Historic status.  These versions lack
   support for current and recommended cryptographic algorithms and
   mechanisms, and various government and industry profiles of
   applications using TLS now mandate avoiding these old TLS versions.
   TLS version 1.2 became the recommended version for IETF protocols in
   2008 (subsequently being obsoleted by TLS version 1.3 in 2018),
   providing sufficient time to transition away from older versions.
   Removing support for older versions from implementations reduces the
   attack surface, reduces opportunity for misconfiguration, and
   streamlines library and product maintenance.

   This document also deprecates Datagram TLS (DTLS) version 1.0 (RFC
   4347) but not DTLS version 1.2, and there is no DTLS version 1.1.

   This document updates many RFCs that normatively refer to TLS version
   1.0 or TLS version 1.1, as described herein.  This document also
   updates the best practices for TLS usage in RFC 7525; hence, it is
   part of BCP 195.

 Status of This Memo

   This memo documents an Internet Best Current Practice.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   BCPs is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/RFC 8996.

 Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

 Table of Contents

   1.  Introduction
     1.1.  RFCs Updated
     1.2.  Terminology
   2.  Support for Deprecation
   3.  SHA-1 Usage Problematic in TLS 1.0 and TLS 1.1
   4.  Do Not Use TLS 1.0
   5.  Do Not Use TLS 1.1
   6.  Updates to RFC 7525
   7.  Operational Considerations
   8.  Security Considerations
   9.  IANA Considerations
   10. References
     10.1.  Normative References
     10.2.  Informative References
   Acknowledgements
   Authors' Addresses

1.  Introduction

   Transport Layer Security (TLS) versions 1.0 [RFC 2246] and 1.1
   [RFC 4346] were superseded by TLS 1.2 [RFC 5246] in 2008, which has now
   itself been superseded by TLS 1.3 [RFC 8446].  Datagram Transport
   Layer Security (DTLS) version 1.0 [RFC 4347] was superseded by DTLS
   1.2 [RFC 6347] in 2012.  Therefore, it is timely to further deprecate
   TLS 1.0, TLS 1.1, and DTLS 1.0.  Accordingly, the aforementioned
   documents have been moved to Historic status.

   Technical reasons for deprecating these versions include:

   *  They require the implementation of older cipher suites that are no
      longer desirable for cryptographic reasons, e.g., TLS 1.0 makes
      TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA mandatory to implement.
   *  There is a lack of support for current recommended cipher suites,
      especially authenticated encryption with associated data (AEAD)
      ciphers, which were not supported prior to TLS 1.2.  Note that
      registry entries for no-longer-desirable ciphersuites remain in
      the registries, but many TLS registries were updated by [RFC 8447],
      which indicates that such entries are not recommended by the IETF.
   *  The integrity of the handshake depends on SHA-1 hash.
   *  The authentication of the peers depends on SHA-1 signatures.
   *  Support for four TLS protocol versions increases the likelihood of
      misconfiguration.
   *  At least one widely used library has plans to drop TLS 1.1 and TLS
      1.0 support in upcoming releases; products using such libraries
      would need to use older versions of the libraries to support TLS
      1.0 and TLS 1.1, which is clearly undesirable.

   Deprecation of these versions is intended to assist developers as
   additional justification to no longer support older (D)TLS versions
   and to migrate to a minimum of (D)TLS 1.2.  Deprecation also assists
   product teams with phasing out support for the older versions, to
   reduce the attack surface and the scope of maintenance for protocols
   in their offerings.

1.1.  RFCs Updated

   This document updates the following RFCs that normatively reference
   TLS 1.0, TLS 1.1, or DTLS 1.0.  The update is to obsolete usage of
   these older versions.  Fallback to these versions is prohibited
   through this update.  Specific references to mandatory minimum
   protocol versions of TLS 1.0 or TLS 1.1 are replaced by TLS 1.2, and
   references to minimum protocol version DTLS 1.0 are replaced by DTLS
   1.2.  Statements that "TLS 1.0 is the most widely deployed version
   and will provide the broadest interoperability" are removed without
   replacement.

   [RFC 3261] [RFC 3329] [RFC 3436] [RFC 3470] [RFC 3501] [RFC 3552] [RFC 3568]
   [RFC 3656] [RFC 3749] [RFC 3767] [RFC 3856] [RFC 3871] [RFC 3887] [RFC 3903]
   [RFC 3943] [RFC 3983] [RFC 4097] [RFC 4111] [RFC 4162] [RFC 4168] [RFC 4217]
   [RFC 4235] [RFC 4261] [RFC 4279] [RFC 4497] [RFC 4513] [RFC 4531] [RFC 4540]
   [RFC 4582] [RFC 4616] [RFC 4642] [RFC 4680] [RFC 4681] [RFC 4712] [RFC 4732]
   [RFC 4785] [RFC 4791] [RFC 4823] [RFC 4851] [RFC 4964] [RFC 4975] [RFC 4976]
   [RFC 4992] [RFC 5018] [RFC 5019] [RFC 5023] [RFC 5024] [RFC 5049] [RFC 5054]
   [RFC 5091] [RFC 5158] [RFC 5216] [RFC 5238] [RFC 5263] [RFC 5281] [RFC 5364]
   [RFC 5415] [RFC 5422] [RFC 5456] [RFC 5734] [RFC 5878] [RFC 6012] [RFC 6042]
   [RFC 6083] [RFC 6084] [RFC 6176] [RFC 6353] [RFC 6367] [RFC 6739] [RFC 6749]
   [RFC 6750] [RFC 7030] [RFC 7465] [RFC 7525] [RFC 7562] [RFC 7568] [RFC 8261]
   [RFC 8422]

   The status of [RFC 7562], [RFC 6042], [RFC 5456], [RFC 5024], [RFC 4540],
   and [RFC 3656] will be updated with permission of the Independent
   Submissions Editor.

   In addition, these RFCs normatively refer to TLS 1.0 or TLS 1.1 and
   have already been obsoleted; they are still listed here and marked as
   updated by this document in order to reiterate that any usage of the
   obsolete protocol should use modern TLS: [RFC 3316], [RFC 3489],
   [RFC 3546], [RFC 3588], [RFC 3734], [RFC 3920], [RFC 4132], [RFC 4244],
   [RFC 4347], [RFC 4366], [RFC 4492], [RFC 4507], [RFC 4572], [RFC 4582],
   [RFC 4934], [RFC 5077], [RFC 5081], [RFC 5101], and [RFC 5953].

   Note that [RFC 4642] has already been updated by [RFC 8143], which
   makes an overlapping, but not quite identical, update as this
   document.

   [RFC 6614] has a requirement for TLS 1.1 or later, although it only
   makes an informative reference to [RFC 4346].  This requirement is
   updated to be for TLS 1.2 or later.

   [RFC 6460], [RFC 4744], and [RFC 4743] are already Historic; they are
   still listed here and marked as updated by this document in order to
   reiterate that any usage of the obsolete protocol should use modern
   TLS.

   This document updates DTLS [RFC 6347].  [RFC 6347] had allowed for
   negotiating the use of DTLS 1.0, which is now forbidden.

   The DES and International Data Encryption Algorithm (IDEA) cipher
   suites specified in [RFC 5469] were specifically removed from TLS 1.2
   by [RFC 5246]; since the only versions of TLS for which their usage is
   defined are now Historic, [RFC 5469] has been moved to Historic as
   well.

   The version-fallback Signaling Cipher Suite Value specified in
   [RFC 7507] was defined to detect when a given client and server
   negotiate a lower version of (D)TLS than their highest shared
   version.  TLS 1.3 ([RFC 8446]) incorporates a different mechanism that
   achieves this purpose, via sentinel values in the ServerHello.Random
   field.  With (D)TLS versions prior to 1.2 fully deprecated, the only
   way for (D)TLS implementations to negotiate a lower version than
   their highest shared version would be to negotiate (D)TLS 1.2 while
   supporting (D)TLS 1.3; supporting (D)TLS 1.3 implies support for the
   ServerHello.Random mechanism.  Accordingly, the functionality from
   [RFC 7507] has been superseded, and this document marks it as
   Obsolete.

1.2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC 2119] [RFC 8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Support for Deprecation

   Specific details on attacks against TLS 1.0 and TLS 1.1, as well as
   their mitigations, are provided in [NIST800-52r2], [RFC 7457], and
   other RFCs referenced therein.  Although mitigations for the current
   known vulnerabilities have been developed, any future issues
   discovered in old protocol versions might not be mitigated in older
   library versions when newer library versions do not support those old
   protocols.

   For example, NIST has provided the following rationale, copied with
   permission from Section 1.1, "History of TLS", of [NIST800-52r2]:

   |  TLS 1.1, specified in RFC 4346 [24], was developed to address
   |  weaknesses discovered in TLS 1.0, primarily in the areas of
   |  initialization vector selection and padding error processing.
   |  Initialization vectors were made explicit to prevent a certain
   |  class of attacks on the Cipher Block Chaining (CBC) mode of
   |  operation used by TLS.  The handling of padding errors was altered
   |  to treat a padding error as a bad message authentication code
   |  rather than a decryption failure.  In addition, the TLS 1.1 RFC
   |  acknowledges attacks on CBC mode that rely on the time to compute
   |  the message authentication code (MAC).  The TLS 1.1 specification
   |  states that to defend against such attacks, an implementation must
   |  process records in the same manner regardless of whether padding
   |  errors exist.  Further implementation considerations for CBC modes
   |  (which were not included in RFC 4346 [24]) are discussed in
   |  Section 3.3.2.
   |  
   |  TLS 1.2, specified in RFC 5246 [25], made several cryptographic
   |  enhancements, particularly in the area of hash functions, with the
   |  ability to use or specify the SHA-2 family of algorithms for hash,
   |  MAC, and Pseudorandom Function (PRF) computations.  TLS 1.2 also
   |  adds authenticated encryption with associated data (AEAD) cipher
   |  suites.
   |  
   |  TLS 1.3, specified in RFC 8446 [57], represents a significant
   |  change to TLS that aims to address threats that have arisen over
   |  the years.  Among the changes are a new handshake protocol, a new
   |  key derivation process that uses the HMAC-based Extract-and-Expand
   |  Key Derivation Function (HKDF) [37], and the removal of cipher
   |  suites that use RSA key transport or static Diffie-Hellman ( DH)
   |  [sic] key exchanges, the CBC mode of operation, or SHA-1.  Many
   |  extensions defined for use with TLS 1.2 and previous versions
   |  cannot be used with TLS 1.3.

3.  SHA-1 Usage Problematic in TLS 1.0 and TLS 1.1

   The integrity of both TLS 1.0 and TLS 1.1 depends on a running SHA-1
   hash of the exchanged messages.  This makes it possible to perform a
   downgrade attack on the handshake by an attacker able to perform 2^77
   operations, well below the acceptable modern security margin.

   Similarly, the authentication of the handshake depends on signatures
   made using a SHA-1 hash or a concatenation of MD5 and SHA-1 hashes
   that is not appreciably stronger than a SHA-1 hash, allowing the
   attacker to impersonate a server when it is able to break the
   severely weakened SHA-1 hash.

   Neither TLS 1.0 nor TLS 1.1 allows the peers to select a stronger
   hash for signatures in the ServerKeyExchange or CertificateVerify
   messages, making the only upgrade path the use of a newer protocol
   version.

   See [Bhargavan2016] for additional details.

4.  Do Not Use TLS 1.0

   TLS 1.0 MUST NOT be used.  Negotiation of TLS 1.0 from any version of
   TLS MUST NOT be permitted.

   Any other version of TLS is more secure than TLS 1.0.  While TLS 1.0
   can be configured to prevent some types of interception, using the
   highest version available is preferred.

   Pragmatically, clients MUST NOT send a ClientHello with
   ClientHello.client_version set to {03,01}.  Similarly, servers MUST
   NOT send a ServerHello with ServerHello.server_version set to
   {03,01}.  Any party receiving a Hello message with the protocol
   version set to {03,01} MUST respond with a "protocol_version" alert
   message and close the connection.

   Historically, TLS specifications were not clear on what the record
   layer version number (TLSPlaintext.version) could contain when
   sending a ClientHello message.  Appendix E of [RFC 5246] notes that
   TLSPlaintext.version could be selected to maximize interoperability,
   though no definitive value is identified as ideal.  That guidance is
   still applicable; therefore, TLS servers MUST accept any value
   {03,XX} (including {03,00}) as the record layer version number for
   ClientHello, but they MUST NOT negotiate TLS 1.0.

5.  Do Not Use TLS 1.1

   TLS 1.1 MUST NOT be used.  Negotiation of TLS 1.1 from any version of
   TLS MUST NOT be permitted.

   Pragmatically, clients MUST NOT send a ClientHello with
   ClientHello.client_version set to {03,02}.  Similarly, servers MUST
   NOT send a ServerHello with ServerHello.server_version set to
   {03,02}.  Any party receiving a Hello message with the protocol
   version set to {03,02} MUST respond with a "protocol_version" alert
   message and close the connection.

   Any newer version of TLS is more secure than TLS 1.1.  While TLS 1.1
   can be configured to prevent some types of interception, using the
   highest version available is preferred.  Support for TLS 1.1 is
   dwindling in libraries and will impact security going forward if
   mitigations for attacks cannot be easily addressed and supported in
   older libraries.

   Historically, TLS specifications were not clear on what the record
   layer version number (TLSPlaintext.version) could contain when
   sending a ClientHello message.  Appendix E of [RFC 5246] notes that
   TLSPlaintext.version could be selected to maximize interoperability,
   though no definitive value is identified as ideal.  That guidance is
   still applicable; therefore, TLS servers MUST accept any value
   {03,XX} (including {03,00}) as the record layer version number for
   ClientHello, but they MUST NOT negotiate TLS 1.1.

6.  Updates to RFC 7525

   "Recommendations for Secure Use of Transport Layer Security (TLS) and
   Datagram Transport Layer Security (DTLS)" [RFC 7525] is BCP 195, which
   is the most recent Best Current Practice for implementing TLS and was
   based on TLS 1.2.  At the time of publication, TLS 1.0 and TLS 1.1
   had not yet been deprecated.  As such, BCP 195 is called out
   specifically to update text implementing the deprecation
   recommendations of this document.

   This document updates Section 3.1.1 of [RFC 7525] by changing SHOULD
   NOT to MUST NOT as follows:

   *  Implementations MUST NOT negotiate TLS version 1.0 [RFC 2246].

      Rationale: TLS 1.0 (published in 1999) does not support many
      modern, strong cipher suites.  In addition, TLS 1.0 lacks a per-
      record Initialization Vector (IV) for CBC-based cipher suites and
      does not warn against common padding errors.

   *  Implementations MUST NOT negotiate TLS version 1.1 [RFC 4346].

      Rationale: TLS 1.1 (published in 2006) is a security improvement
      over TLS 1.0 but still does not support certain stronger cipher
      suites.

   This document updates Section 3.1.2 of [RFC 7525] by changing SHOULD
   NOT to MUST NOT and adding a reference to RFC 6347 as follows:

   *  Implementations MUST NOT negotiate DTLS version 1.0 [RFC 4347]
      [RFC 6347].

      Version 1.0 of DTLS correlates to version 1.1 of TLS (see above).

7.  Operational Considerations

   This document is part of BCP 195 and, as such, reflects the
   understanding of the IETF (at the time of this document's
   publication) as to the best practices for TLS and DTLS usage.

   Though TLS 1.1 has been obsolete since the publication of [RFC 5246]
   in 2008, and DTLS 1.0 has been obsolete since the publication of
   [RFC 6347] in 2012, there may remain some systems in operation that do
   not support (D)TLS 1.2 or higher.  Adopting the practices recommended
   by this document for any systems that need to communicate with the
   aforementioned class of systems will cause failure to interoperate.
   However, disregarding the recommendations of this document in order
   to continue to interoperate with the aforementioned class of systems
   incurs some amount of risk.  The nature of the risks incurred by
   operating in contravention to the recommendations of this document
   are discussed in Sections 2 and 3, and knowledge of those risks
   should be used along with any potential mitigating factors and the
   risks inherent to updating the systems in question when deciding how
   quickly to adopt the recommendations specified in this document.

8.  Security Considerations

   This document deprecates two older TLS protocol versions and one
   older DTLS protocol version for security reasons already described.
   The attack surface is reduced when there are a smaller number of
   supported protocols and fallback options are removed.

9.  IANA Considerations

   This document has no IANA actions.

10.  References

10.1.  Normative References

   [RFC 2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC 2119, March 1997,
              <https://www.rfc-editor.org/info/RFC 2119>.

   [RFC 2246]  Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
              RFC 2246, DOI 10.17487/RFC 2246, January 1999,
              <https://www.rfc-editor.org/info/RFC 2246>.

   [RFC 3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              DOI 10.17487/RFC 3261, June 2002,
              <https://www.rfc-editor.org/info/RFC 3261>.

   [RFC 3329]  Arkko, J., Torvinen, V., Camarillo, G., Niemi, A., and T.
              Haukka, "Security Mechanism Agreement for the Session
              Initiation Protocol (SIP)", RFC 3329,
              DOI 10.17487/RFC 3329, January 2003,
              <https://www.rfc-editor.org/info/RFC 3329>.

   [RFC 3436]  Jungmaier, A., Rescorla, E., and M. Tuexen, "Transport
              Layer Security over Stream Control Transmission Protocol",
              RFC 3436, DOI 10.17487/RFC 3436, December 2002,
              <https://www.rfc-editor.org/info/RFC 3436>.

   [RFC 3470]  Hollenbeck, S., Rose, M., and L. Masinter, "Guidelines for
              the Use of Extensible Markup Language (XML) within IETF
              Protocols", BCP 70, RFC 3470, DOI 10.17487/RFC 3470,
              January 2003, <https://www.rfc-editor.org/info/RFC 3470>.

   [RFC 3501]  Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION
              4rev1", RFC 3501, DOI 10.17487/RFC 3501, March 2003,
              <https://www.rfc-editor.org/info/RFC 3501>.

   [RFC 3552]  Rescorla, E. and B. Korver, "Guidelines for Writing RFC
              Text on Security Considerations", BCP 72, RFC 3552,
              DOI 10.17487/RFC 3552, July 2003,
              <https://www.rfc-editor.org/info/RFC 3552>.

   [RFC 3568]  Barbir, A., Cain, B., Nair, R., and O. Spatscheck, "Known
              Content Network (CN) Request-Routing Mechanisms",
              RFC 3568, DOI 10.17487/RFC 3568, July 2003,
              <https://www.rfc-editor.org/info/RFC 3568>.

   [RFC 3656]  Siemborski, R., "The Mailbox Update (MUPDATE) Distributed
              Mailbox Database Protocol", RFC 3656,
              DOI 10.17487/RFC 3656, December 2003,
              <https://www.rfc-editor.org/info/RFC 3656>.

   [RFC 3749]  Hollenbeck, S., "Transport Layer Security Protocol
              Compression Methods", RFC 3749, DOI 10.17487/RFC 3749, May
              2004, <https://www.rfc-editor.org/info/RFC 3749>.

   [RFC 3767]  Farrell, S., Ed., "Securely Available Credentials
              Protocol", RFC 3767, DOI 10.17487/RFC 3767, June 2004,
              <https://www.rfc-editor.org/info/RFC 3767>.

   [RFC 3856]  Rosenberg, J., "A Presence Event Package for the Session
              Initiation Protocol (SIP)", RFC 3856,
              DOI 10.17487/RFC 3856, August 2004,
              <https://www.rfc-editor.org/info/RFC 3856>.

   [RFC 3871]  Jones, G., Ed., "Operational Security Requirements for
              Large Internet Service Provider (ISP) IP Network
              Infrastructure", RFC 3871, DOI 10.17487/RFC 3871, September
              2004, <https://www.rfc-editor.org/info/RFC 3871>.

   [RFC 3887]  Hansen, T., "Message Tracking Query Protocol", RFC 3887,
              DOI 10.17487/RFC 3887, September 2004,
              <https://www.rfc-editor.org/info/RFC 3887>.

   [RFC 3903]  Niemi, A., Ed., "Session Initiation Protocol (SIP)
              Extension for Event State Publication", RFC 3903,
              DOI 10.17487/RFC 3903, October 2004,
              <https://www.rfc-editor.org/info/RFC 3903>.

   [RFC 3943]  Friend, R., "Transport Layer Security (TLS) Protocol
              Compression Using Lempel-Ziv-Stac (LZS)", RFC 3943,
              DOI 10.17487/RFC 3943, November 2004,
              <https://www.rfc-editor.org/info/RFC 3943>.

   [RFC 3983]  Newton, A. and M. Sanz, "Using the Internet Registry
              Information Service (IRIS) over the Blocks Extensible
              Exchange Protocol (BEEP)", RFC 3983, DOI 10.17487/RFC 3983,
              January 2005, <https://www.rfc-editor.org/info/RFC 3983>.

   [RFC 4097]  Barnes, M., Ed., "Middlebox Communications (MIDCOM)
              Protocol Evaluation", RFC 4097, DOI 10.17487/RFC 4097, June
              2005, <https://www.rfc-editor.org/info/RFC 4097>.

   [RFC 4111]  Fang, L., Ed., "Security Framework for Provider-
              Provisioned Virtual Private Networks (PPVPNs)", RFC 4111,
              DOI 10.17487/RFC 4111, July 2005,
              <https://www.rfc-editor.org/info/RFC 4111>.

   [RFC 4162]  Lee, H.J., Yoon, J.H., and J.I. Lee, "Addition of SEED
              Cipher Suites to Transport Layer Security (TLS)",
              RFC 4162, DOI 10.17487/RFC 4162, August 2005,
              <https://www.rfc-editor.org/info/RFC 4162>.

   [RFC 4168]  Rosenberg, J., Schulzrinne, H., and G. Camarillo, "The
              Stream Control Transmission Protocol (SCTP) as a Transport
              for the Session Initiation Protocol (SIP)", RFC 4168,
              DOI 10.17487/RFC 4168, October 2005,
              <https://www.rfc-editor.org/info/RFC 4168>.

   [RFC 4217]  Ford-Hutchinson, P., "Securing FTP with TLS", RFC 4217,
              DOI 10.17487/RFC 4217, October 2005,
              <https://www.rfc-editor.org/info/RFC 4217>.

   [RFC 4235]  Rosenberg, J., Schulzrinne, H., and R. Mahy, Ed., "An
              INVITE-Initiated Dialog Event Package for the Session
              Initiation Protocol (SIP)", RFC 4235,
              DOI 10.17487/RFC 4235, November 2005,
              <https://www.rfc-editor.org/info/RFC 4235>.

   [RFC 4261]  Walker, J. and A. Kulkarni, Ed., "Common Open Policy
              Service (COPS) Over Transport Layer Security (TLS)",
              RFC 4261, DOI 10.17487/RFC 4261, December 2005,
              <https://www.rfc-editor.org/info/RFC 4261>.

   [RFC 4279]  Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
              Ciphersuites for Transport Layer Security (TLS)",
              RFC 4279, DOI 10.17487/RFC 4279, December 2005,
              <https://www.rfc-editor.org/info/RFC 4279>.

   [RFC 4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.1", RFC 4346,
              DOI 10.17487/RFC 4346, April 2006,
              <https://www.rfc-editor.org/info/RFC 4346>.

   [RFC 4497]  Elwell, J., Derks, F., Mourot, P., and O. Rousseau,
              "Interworking between the Session Initiation Protocol
              (SIP) and QSIG", BCP 117, RFC 4497, DOI 10.17487/RFC 4497,
              May 2006, <https://www.rfc-editor.org/info/RFC 4497>.

   [RFC 4513]  Harrison, R., Ed., "Lightweight Directory Access Protocol
              (LDAP): Authentication Methods and Security Mechanisms",
              RFC 4513, DOI 10.17487/RFC 4513, June 2006,
              <https://www.rfc-editor.org/info/RFC 4513>.

   [RFC 4531]  Zeilenga, K., "Lightweight Directory Access Protocol
              (LDAP) Turn Operation", RFC 4531, DOI 10.17487/RFC 4531,
              June 2006, <https://www.rfc-editor.org/info/RFC 4531>.

   [RFC 4540]  Stiemerling, M., Quittek, J., and C. Cadar, "NEC's Simple
              Middlebox Configuration (SIMCO) Protocol Version 3.0",
              RFC 4540, DOI 10.17487/RFC 4540, May 2006,
              <https://www.rfc-editor.org/info/RFC 4540>.

   [RFC 4582]  Camarillo, G., Ott, J., and K. Drage, "The Binary Floor
              Control Protocol (BFCP)", RFC 4582, DOI 10.17487/RFC 4582,
              November 2006, <https://www.rfc-editor.org/info/RFC 4582>.

   [RFC 4616]  Zeilenga, K., Ed., "The PLAIN Simple Authentication and
              Security Layer (SASL) Mechanism", RFC 4616,
              DOI 10.17487/RFC 4616, August 2006,
              <https://www.rfc-editor.org/info/RFC 4616>.

   [RFC 4642]  Murchison, K., Vinocur, J., and C. Newman, "Using
              Transport Layer Security (TLS) with Network News Transfer
              Protocol (NNTP)", RFC 4642, DOI 10.17487/RFC 4642, October
              2006, <https://www.rfc-editor.org/info/RFC 4642>.

   [RFC 4680]  Santesson, S., "TLS Handshake Message for Supplemental
              Data", RFC 4680, DOI 10.17487/RFC 4680, October 2006,
              <https://www.rfc-editor.org/info/RFC 4680>.

   [RFC 4681]  Santesson, S., Medvinsky, A., and J. Ball, "TLS User
              Mapping Extension", RFC 4681, DOI 10.17487/RFC 4681,
              October 2006, <https://www.rfc-editor.org/info/RFC 4681>.

   [RFC 4712]  Siddiqui, A., Romascanu, D., Golovinsky, E., Rahman, M.,
              and Y. Kim, "Transport Mappings for Real-time Application
              Quality-of-Service Monitoring (RAQMON) Protocol Data Unit
              (PDU)", RFC 4712, DOI 10.17487/RFC 4712, October 2006,
              <https://www.rfc-editor.org/info/RFC 4712>.

   [RFC 4732]  Handley, M., Ed., Rescorla, E., Ed., and IAB, "Internet
              Denial-of-Service Considerations", RFC 4732,
              DOI 10.17487/RFC 4732, December 2006,
              <https://www.rfc-editor.org/info/RFC 4732>.

   [RFC 4743]  Goddard, T., "Using NETCONF over the Simple Object Access
              Protocol (SOAP)", RFC 4743, DOI 10.17487/RFC 4743, December
              2006, <https://www.rfc-editor.org/info/RFC 4743>.

   [RFC 4744]  Lear, E. and K. Crozier, "Using the NETCONF Protocol over
              the Blocks Extensible Exchange Protocol (BEEP)", RFC 4744,
              DOI 10.17487/RFC 4744, December 2006,
              <https://www.rfc-editor.org/info/RFC 4744>.

   [RFC 4785]  Blumenthal, U. and P. Goel, "Pre-Shared Key (PSK)
              Ciphersuites with NULL Encryption for Transport Layer
              Security (TLS)", RFC 4785, DOI 10.17487/RFC 4785, January
              2007, <https://www.rfc-editor.org/info/RFC 4785>.

   [RFC 4791]  Daboo, C., Desruisseaux, B., and L. Dusseault,
              "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
              DOI 10.17487/RFC 4791, March 2007,
              <https://www.rfc-editor.org/info/RFC 4791>.

   [RFC 4823]  Harding, T. and R. Scott, "FTP Transport for Secure Peer-
              to-Peer Business Data Interchange over the Internet",
              RFC 4823, DOI 10.17487/RFC 4823, April 2007,
              <https://www.rfc-editor.org/info/RFC 4823>.

   [RFC 4851]  Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou, "The
              Flexible Authentication via Secure Tunneling Extensible
              Authentication Protocol Method (EAP-FAST)", RFC 4851,
              DOI 10.17487/RFC 4851, May 2007,
              <https://www.rfc-editor.org/info/RFC 4851>.

   [RFC 4964]  Allen, A., Ed., Holm, J., and T. Hallin, "The P-Answer-
              State Header Extension to the Session Initiation Protocol
              for the Open Mobile Alliance Push to Talk over Cellular",
              RFC 4964, DOI 10.17487/RFC 4964, September 2007,
              <https://www.rfc-editor.org/info/RFC 4964>.

   [RFC 4975]  Campbell, B., Ed., Mahy, R., Ed., and C. Jennings, Ed.,
              "The Message Session Relay Protocol (MSRP)", RFC 4975,
              DOI 10.17487/RFC 4975, September 2007,
              <https://www.rfc-editor.org/info/RFC 4975>.

   [RFC 4976]  Jennings, C., Mahy, R., and A. B. Roach, "Relay Extensions
              for the Message Sessions Relay Protocol (MSRP)", RFC 4976,
              DOI 10.17487/RFC 4976, September 2007,
              <https://www.rfc-editor.org/info/RFC 4976>.

   [RFC 4992]  Newton, A., "XML Pipelining with Chunks for the Internet
              Registry Information Service", RFC 4992,
              DOI 10.17487/RFC 4992, August 2007,
              <https://www.rfc-editor.org/info/RFC 4992>.

   [RFC 5018]  Camarillo, G., "Connection Establishment in the Binary
              Floor Control Protocol (BFCP)", RFC 5018,
              DOI 10.17487/RFC 5018, September 2007,
              <https://www.rfc-editor.org/info/RFC 5018>.

   [RFC 5019]  Deacon, A. and R. Hurst, "The Lightweight Online
              Certificate Status Protocol (OCSP) Profile for High-Volume
              Environments", RFC 5019, DOI 10.17487/RFC 5019, September
              2007, <https://www.rfc-editor.org/info/RFC 5019>.

   [RFC 5023]  Gregorio, J., Ed. and B. de hOra, Ed., "The Atom
              Publishing Protocol", RFC 5023, DOI 10.17487/RFC 5023,
              October 2007, <https://www.rfc-editor.org/info/RFC 5023>.

   [RFC 5024]  Friend, I., "ODETTE File Transfer Protocol 2.0", RFC 5024,
              DOI 10.17487/RFC 5024, November 2007,
              <https://www.rfc-editor.org/info/RFC 5024>.

   [RFC 5049]  Bormann, C., Liu, Z., Price, R., and G. Camarillo, Ed.,
              "Applying Signaling Compression (SigComp) to the Session
              Initiation Protocol (SIP)", RFC 5049,
              DOI 10.17487/RFC 5049, December 2007,
              <https://www.rfc-editor.org/info/RFC 5049>.

   [RFC 5054]  Taylor, D., Wu, T., Mavrogiannopoulos, N., and T. Perrin,
              "Using the Secure Remote Password (SRP) Protocol for TLS
              Authentication", RFC 5054, DOI 10.17487/RFC 5054, November
              2007, <https://www.rfc-editor.org/info/RFC 5054>.

   [RFC 5091]  Boyen, X. and L. Martin, "Identity-Based Cryptography
              Standard (IBCS) #1: Supersingular Curve Implementations of
              the BF and BB1 Cryptosystems", RFC 5091,
              DOI 10.17487/RFC 5091, December 2007,
              <https://www.rfc-editor.org/info/RFC 5091>.

   [RFC 5158]  Huston, G., "6to4 Reverse DNS Delegation Specification",
              RFC 5158, DOI 10.17487/RFC 5158, March 2008,
              <https://www.rfc-editor.org/info/RFC 5158>.

   [RFC 5216]  Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
              Authentication Protocol", RFC 5216, DOI 10.17487/RFC 5216,
              March 2008, <https://www.rfc-editor.org/info/RFC 5216>.

   [RFC 5238]  Phelan, T., "Datagram Transport Layer Security (DTLS) over
              the Datagram Congestion Control Protocol (DCCP)",
              RFC 5238, DOI 10.17487/RFC 5238, May 2008,
              <https://www.rfc-editor.org/info/RFC 5238>.

   [RFC 5263]  Lonnfors, M., Costa-Requena, J., Leppanen, E., and H.
              Khartabil, "Session Initiation Protocol (SIP) Extension
              for Partial Notification of Presence Information",
              RFC 5263, DOI 10.17487/RFC 5263, September 2008,
              <https://www.rfc-editor.org/info/RFC 5263>.

   [RFC 5281]  Funk, P. and S. Blake-Wilson, "Extensible Authentication
              Protocol Tunneled Transport Layer Security Authenticated
              Protocol Version 0 (EAP-TTLSv0)", RFC 5281,
              DOI 10.17487/RFC 5281, August 2008,
              <https://www.rfc-editor.org/info/RFC 5281>.

   [RFC 5364]  Garcia-Martin, M. and G. Camarillo, "Extensible Markup
              Language (XML) Format Extension for Representing Copy
              Control Attributes in Resource Lists", RFC 5364,
              DOI 10.17487/RFC 5364, October 2008,
              <https://www.rfc-editor.org/info/RFC 5364>.

   [RFC 5422]  Cam-Winget, N., McGrew, D., Salowey, J., and H. Zhou,
              "Dynamic Provisioning Using Flexible Authentication via
              Secure Tunneling Extensible Authentication Protocol (EAP-
              FAST)", RFC 5422, DOI 10.17487/RFC 5422, March 2009,
              <https://www.rfc-editor.org/info/RFC 5422>.

   [RFC 5469]  Eronen, P., Ed., "DES and IDEA Cipher Suites for Transport
              Layer Security (TLS)", RFC 5469, DOI 10.17487/RFC 5469,
              February 2009, <https://www.rfc-editor.org/info/RFC 5469>.

   [RFC 5734]  Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
              Transport over TCP", STD 69, RFC 5734,
              DOI 10.17487/RFC 5734, August 2009,
              <https://www.rfc-editor.org/info/RFC 5734>.

   [RFC 5878]  Brown, M. and R. Housley, "Transport Layer Security (TLS)
              Authorization Extensions", RFC 5878, DOI 10.17487/RFC 5878,
              May 2010, <https://www.rfc-editor.org/info/RFC 5878>.

   [RFC 5953]  Hardaker, W., "Transport Layer Security (TLS) Transport
              Model for the Simple Network Management Protocol (SNMP)",
              RFC 5953, DOI 10.17487/RFC 5953, August 2010,
              <https://www.rfc-editor.org/info/RFC 5953>.

   [RFC 6042]  Keromytis, A., "Transport Layer Security (TLS)
              Authorization Using KeyNote", RFC 6042,
              DOI 10.17487/RFC 6042, October 2010,
              <https://www.rfc-editor.org/info/RFC 6042>.

   [RFC 6176]  Turner, S. and T. Polk, "Prohibiting Secure Sockets Layer
              (SSL) Version 2.0", RFC 6176, DOI 10.17487/RFC 6176, March
              2011, <https://www.rfc-editor.org/info/RFC 6176>.

   [RFC 6353]  Hardaker, W., "Transport Layer Security (TLS) Transport
              Model for the Simple Network Management Protocol (SNMP)",
              STD 78, RFC 6353, DOI 10.17487/RFC 6353, July 2011,
              <https://www.rfc-editor.org/info/RFC 6353>.

   [RFC 6367]  Kanno, S. and M. Kanda, "Addition of the Camellia Cipher
              Suites to Transport Layer Security (TLS)", RFC 6367,
              DOI 10.17487/RFC 6367, September 2011,
              <https://www.rfc-editor.org/info/RFC 6367>.

   [RFC 6739]  Schulzrinne, H. and H. Tschofenig, "Synchronizing Service
              Boundaries and <mapping> Elements Based on the Location-
              to-Service Translation (LoST) Protocol", RFC 6739,
              DOI 10.17487/RFC 6739, October 2012,
              <https://www.rfc-editor.org/info/RFC 6739>.

   [RFC 6749]  Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
              RFC 6749, DOI 10.17487/RFC 6749, October 2012,
              <https://www.rfc-editor.org/info/RFC 6749>.

   [RFC 6750]  Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
              Framework: Bearer Token Usage", RFC 6750,
              DOI 10.17487/RFC 6750, October 2012,
              <https://www.rfc-editor.org/info/RFC 6750>.

   [RFC 7030]  Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
              "Enrollment over Secure Transport", RFC 7030,
              DOI 10.17487/RFC 7030, October 2013,
              <https://www.rfc-editor.org/info/RFC 7030>.

   [RFC 7465]  Popov, A., "Prohibiting RC4 Cipher Suites", RFC 7465,
              DOI 10.17487/RFC 7465, February 2015,
              <https://www.rfc-editor.org/info/RFC 7465>.

   [RFC 7507]  Moeller, B. and A. Langley, "TLS Fallback Signaling Cipher
              Suite Value (SCSV) for Preventing Protocol Downgrade
              Attacks", RFC 7507, DOI 10.17487/RFC 7507, April 2015,
              <https://www.rfc-editor.org/info/RFC 7507>.

   [RFC 7525]  Sheffer, Y., Holz, R., and P. Saint-Andre,
              "Recommendations for Secure Use of Transport Layer
              Security (TLS) and Datagram Transport Layer Security
              (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC 7525, May
              2015, <https://www.rfc-editor.org/info/RFC 7525>.

   [RFC 7562]  Thakore, D., "Transport Layer Security (TLS) Authorization
              Using Digital Transmission Content Protection (DTCP)
              Certificates", RFC 7562, DOI 10.17487/RFC 7562, July 2015,
              <https://www.rfc-editor.org/info/RFC 7562>.

   [RFC 7568]  Barnes, R., Thomson, M., Pironti, A., and A. Langley,
              "Deprecating Secure Sockets Layer Version 3.0", RFC 7568,
              DOI 10.17487/RFC 7568, June 2015,
              <https://www.rfc-editor.org/info/RFC 7568>.

   [RFC 8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC 8174,
              May 2017, <https://www.rfc-editor.org/info/RFC 8174>.

   [RFC 8422]  Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
              Curve Cryptography (ECC) Cipher Suites for Transport Layer
              Security (TLS) Versions 1.2 and Earlier", RFC 8422,
              DOI 10.17487/RFC 8422, August 2018,
              <https://www.rfc-editor.org/info/RFC 8422>.

10.2.  Informative References

   [Bhargavan2016]
              Bhargavan, K. and G. Leuren, "Transcript Collision
              Attacks: Breaking Authentication in TLS, IKE, and SSH",
              DOI 10.14722/ndss.2016.23418, February 2016,
              <https://www.mitls.org/downloads/transcript-
              collisions.pdf>.

   [NIST800-52r2]
              National Institute of Standards and Technology,
              "Guidelines for the Selection, Configuration, and Use of
              Transport Layer Security (TLS) Implementations NIST
              SP800-52r2", DOI 10.6028/NIST.SP.800-52r2, August 2019,
              <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
              NIST.SP.800-52r2.pdf>.

   [RFC 3316]  Arkko, J., Kuijpers, G., Soliman, H., Loughney, J., and J.
              Wiljakka, "Internet Protocol Version 6 (IPv6) for Some
              Second and Third Generation Cellular Hosts", RFC 3316,
              DOI 10.17487/RFC 3316, April 2003,
              <https://www.rfc-editor.org/info/RFC 3316>.

   [RFC 3489]  Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
              "STUN - Simple Traversal of User Datagram Protocol (UDP)
              Through Network Address Translators (NATs)", RFC 3489,
              DOI 10.17487/RFC 3489, March 2003,
              <https://www.rfc-editor.org/info/RFC 3489>.

   [RFC 3546]  Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
              and T. Wright, "Transport Layer Security (TLS)
              Extensions", RFC 3546, DOI 10.17487/RFC 3546, June 2003,
              <https://www.rfc-editor.org/info/RFC 3546>.

   [RFC 3588]  Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and J.
              Arkko, "Diameter Base Protocol", RFC 3588,
              DOI 10.17487/RFC 3588, September 2003,
              <https://www.rfc-editor.org/info/RFC 3588>.

   [RFC 3734]  Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
              Transport Over TCP", RFC 3734, DOI 10.17487/RFC 3734, March
              2004, <https://www.rfc-editor.org/info/RFC 3734>.

   [RFC 3920]  Saint-Andre, P., Ed., "Extensible Messaging and Presence
              Protocol (XMPP): Core", RFC 3920, DOI 10.17487/RFC 3920,
              October 2004, <https://www.rfc-editor.org/info/RFC 3920>.

   [RFC 4132]  Moriai, S., Kato, A., and M. Kanda, "Addition of Camellia
              Cipher Suites to Transport Layer Security (TLS)",
              RFC 4132, DOI 10.17487/RFC 4132, July 2005,
              <https://www.rfc-editor.org/info/RFC 4132>.

   [RFC 4244]  Barnes, M., Ed., "An Extension to the Session Initiation
              Protocol (SIP) for Request History Information", RFC 4244,
              DOI 10.17487/RFC 4244, November 2005,
              <https://www.rfc-editor.org/info/RFC 4244>.

   [RFC 4347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security", RFC 4347, DOI 10.17487/RFC 4347, April 2006,
              <https://www.rfc-editor.org/info/RFC 4347>.

   [RFC 4366]  Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
              and T. Wright, "Transport Layer Security (TLS)
              Extensions", RFC 4366, DOI 10.17487/RFC 4366, April 2006,
              <https://www.rfc-editor.org/info/RFC 4366>.

   [RFC 4492]  Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
              Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
              for Transport Layer Security (TLS)", RFC 4492,
              DOI 10.17487/RFC 4492, May 2006,
              <https://www.rfc-editor.org/info/RFC 4492>.

   [RFC 4507]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
              "Transport Layer Security (TLS) Session Resumption without
              Server-Side State", RFC 4507, DOI 10.17487/RFC 4507, May
              2006, <https://www.rfc-editor.org/info/RFC 4507>.

   [RFC 4572]  Lennox, J., "Connection-Oriented Media Transport over the
              Transport Layer Security (TLS) Protocol in the Session
              Description Protocol (SDP)", RFC 4572,
              DOI 10.17487/RFC 4572, July 2006,
              <https://www.rfc-editor.org/info/RFC 4572>.

   [RFC 4934]  Hollenbeck, S., "Extensible Provisioning Protocol (EPP)
              Transport Over TCP", RFC 4934, DOI 10.17487/RFC 4934, May
              2007, <https://www.rfc-editor.org/info/RFC 4934>.

   [RFC 5077]  Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
              "Transport Layer Security (TLS) Session Resumption without
              Server-Side State", RFC 5077, DOI 10.17487/RFC 5077,
              January 2008, <https://www.rfc-editor.org/info/RFC 5077>.

   [RFC 5081]  Mavrogiannopoulos, N., "Using OpenPGP Keys for Transport
              Layer Security (TLS) Authentication", RFC 5081,
              DOI 10.17487/RFC 5081, November 2007,
              <https://www.rfc-editor.org/info/RFC 5081>.

   [RFC 5101]  Claise, B., Ed., "Specification of the IP Flow Information
              Export (IPFIX) Protocol for the Exchange of IP Traffic
              Flow Information", RFC 5101, DOI 10.17487/RFC 5101, January
              2008, <https://www.rfc-editor.org/info/RFC 5101>.

   [RFC 5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246,
              DOI 10.17487/RFC 5246, August 2008,
              <https://www.rfc-editor.org/info/RFC 5246>.

   [RFC 5415]  Calhoun, P., Ed., Montemurro, M., Ed., and D. Stanley,
              Ed., "Control And Provisioning of Wireless Access Points
              (CAPWAP) Protocol Specification", RFC 5415,
              DOI 10.17487/RFC 5415, March 2009,
              <https://www.rfc-editor.org/info/RFC 5415>.

   [RFC 5456]  Spencer, M., Capouch, B., Guy, E., Ed., Miller, F., and K.
              Shumard, "IAX: Inter-Asterisk eXchange Version 2",
              RFC 5456, DOI 10.17487/RFC 5456, February 2010,
              <https://www.rfc-editor.org/info/RFC 5456>.

   [RFC 6012]  Salowey, J., Petch, T., Gerhards, R., and H. Feng,
              "Datagram Transport Layer Security (DTLS) Transport
              Mapping for Syslog", RFC 6012, DOI 10.17487/RFC 6012,
              October 2010, <https://www.rfc-editor.org/info/RFC 6012>.

   [RFC 6083]  Tuexen, M., Seggelmann, R., and E. Rescorla, "Datagram
              Transport Layer Security (DTLS) for Stream Control
              Transmission Protocol (SCTP)", RFC 6083,
              DOI 10.17487/RFC 6083, January 2011,
              <https://www.rfc-editor.org/info/RFC 6083>.

   [RFC 6084]  Fu, X., Dickmann, C., and J. Crowcroft, "General Internet
              Signaling Transport (GIST) over Stream Control
              Transmission Protocol (SCTP) and Datagram Transport Layer
              Security (DTLS)", RFC 6084, DOI 10.17487/RFC 6084, January
              2011, <https://www.rfc-editor.org/info/RFC 6084>.

   [RFC 6347]  Rescorla, E. and N. Modadugu, "Datagram Transport Layer
              Security Version 1.2", RFC 6347, DOI 10.17487/RFC 6347,
              January 2012, <https://www.rfc-editor.org/info/RFC 6347>.

   [RFC 6460]  Salter, M. and R. Housley, "Suite B Profile for Transport
              Layer Security (TLS)", RFC 6460, DOI 10.17487/RFC 6460,
              January 2012, <https://www.rfc-editor.org/info/RFC 6460>.

   [RFC 6614]  Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
              "Transport Layer Security (TLS) Encryption for RADIUS",
              RFC 6614, DOI 10.17487/RFC 6614, May 2012,
              <https://www.rfc-editor.org/info/RFC 6614>.

   [RFC 7457]  Sheffer, Y., Holz, R., and P. Saint-Andre, "Summarizing
              Known Attacks on Transport Layer Security (TLS) and
              Datagram TLS (DTLS)", RFC 7457, DOI 10.17487/RFC 7457,
              February 2015, <https://www.rfc-editor.org/info/RFC 7457>.

   [RFC 8143]  Elie, J., "Using Transport Layer Security (TLS) with
              Network News Transfer Protocol (NNTP)", RFC 8143,
              DOI 10.17487/RFC 8143, April 2017,
              <https://www.rfc-editor.org/info/RFC 8143>.

   [RFC 8261]  Tuexen, M., Stewart, R., Jesup, R., and S. Loreto,
              "Datagram Transport Layer Security (DTLS) Encapsulation of
              SCTP Packets", RFC 8261, DOI 10.17487/RFC 8261, November
              2017, <https://www.rfc-editor.org/info/RFC 8261>.

   [RFC 8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC 8446, August 2018,
              <https://www.rfc-editor.org/info/RFC 8446>.

   [RFC 8447]  Salowey, J. and S. Turner, "IANA Registry Updates for TLS
              and DTLS", RFC 8447, DOI 10.17487/RFC 8447, August 2018,
              <https://www.rfc-editor.org/info/RFC 8447>.

Acknowledgements

   Thanks to those that provided usage data and reviewed and/or improved
   this document, including: Michael Ackermann, David Benjamin, David
   Black, Deborah Brungard, Alan DeKok, Viktor Dukhovni, Julien Élie,
   Adrian Farrelll, Gary Gapinski, Alessandro Ghedini, Peter Gutmann,
   Jeremy Harris, Nick Hilliard, James Hodgkinson, Russ Housley, Hubert
   Kario, Benjamin Kaduk, John Klensin, Watson Ladd, Eliot Lear, Ted
   Lemon, John Mattsson, Keith Moore, Tom Petch, Eric Mill, Yoav Nir,
   Andrei Popov, Michael Richardson, Eric Rescorla, Rich Salz, Mohit
   Sethi, Yaron Sheffer, Rob Sayre, Robert Sparks, Barbara Stark, Martin
   Thomson, Sean Turner, Loganaden Velvindron, Jakub Wilk, and
   Christopher Wood.

Authors' Addresses

   Kathleen Moriarty
   Center for Internet Security (CIS)
   East Greenbush, NY
   United States of America

   Email: Kathleen.Moriarty.ietf@gmail.com


   Stephen Farrell
   Trinity College Dublin
   Dublin
   2
   Ireland

   Phone: +353-1-896-2354
   Email: stephen.farrell@cs.tcd.ie



RFC TOTAL SIZE: 49676 bytes
PUBLICATION DATE: Tuesday, March 23rd, 2021
LEGAL RIGHTS: The IETF Trust (see BCP 78)      


RFC-ARCHIVE.ORG

© RFC 8996: The IETF Trust, Tuesday, March 23rd, 2021
© the RFC Archive, 2024, RFC-Archive.org
Maintainer: J. Tunnissen

Privacy Statement