|
|
|
|
|
IETF RFC 8261
Last modified on Thursday, November 16th, 2017
Permanent link to RFC 8261
Search GitHub Wiki for RFC 8261
Show other RFCs mentioning RFC 8261
Internet Engineering Task Force (IETF) M. Tuexen
Request for Comments: 8261 Muenster Univ. of Appl. Sciences
Category: Standards Track R. Stewart
ISSN: 2070-1721 Netflix, Inc.
R. Jesup
WorldGate Communications
S. Loreto
Ericsson
November 2017
Datagram Transport Layer Security (DTLS) Encapsulation of SCTP Packets
Abstract
The Stream Control Transmission Protocol (SCTP) is a transport
protocol originally defined to run on top of the network protocols
IPv4 or IPv6. This document specifies how SCTP can be used on top of
the Datagram Transport Layer Security (DTLS) protocol. Using the
encapsulation method described in this document, SCTP is unaware of
the protocols being used below DTLS; hence, explicit IP addresses
cannot be used in the SCTP control chunks. As a consequence, the
SCTP associations carried over DTLS can only be single-homed.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/RFC 8261.
Tuexen, et al. Standards Track PAGE 1
RFC 8261 SCTP over DTLS November 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Encapsulation and Decapsulation Procedure . . . . . . . . . . 3
4. General Considerations . . . . . . . . . . . . . . . . . . . 4
5. DTLS Considerations . . . . . . . . . . . . . . . . . . . . . 4
6. SCTP Considerations . . . . . . . . . . . . . . . . . . . . . 5
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 6
8. Security Considerations . . . . . . . . . . . . . . . . . . . 7
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 7
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 10
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 10
Tuexen, et al. Standards Track PAGE 2
RFC 8261 SCTP over DTLS November 2017
1. Overview
The Stream Control Transmission Protocol (SCTP) as defined in
[RFC 4960] is a transport protocol running on top of the network
protocols IPv4 [RFC 791] or IPv6 [RFC 8200]. This document specifies
how SCTP is used on top of the Datagram Transport Layer Security
(DTLS) protocol. DTLS 1.0 is defined in [RFC 4347], and the latest
version when this RFC was published, DTLS 1.2, is defined in
[RFC 6347]. This encapsulation is used, for example, within the
WebRTC protocol suite (see [RTC-OVERVIEW] for an overview) for
transporting non-SRTP data between browsers. The architecture of
this stack is described in [DATA-CHAN].
+----------+
| SCTP |
+----------+
| DTLS |
+----------+
| ICE/UDP |
+----------+
Figure 1: Basic Stack Diagram
This encapsulation of SCTP over DTLS over UDP or ICE/UDP (see
[RFC 5245]) can provide a NAT traversal solution in addition to
confidentiality, source authentication, and integrity-protected
transfers. Please note that using ICE does not necessarily imply
that a different packet format is used on the wire.
Please note that the procedures defined in [RFC 6951] for dealing with
the UDP port numbers do not apply here. When using the encapsulation
defined in this document, SCTP is unaware about the protocols used
below DTLS.
2. Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC 2119] [RFC 8174] when, and only when, they appear in all
capitals, as shown here.
3. Encapsulation and Decapsulation Procedure
When an SCTP packet is provided to the DTLS layer, the complete SCTP
packet, consisting of the SCTP common header and a number of SCTP
chunks, is handled as the payload of the application-layer protocol
of DTLS. When the DTLS layer has processed a DTLS record containing
Tuexen, et al. Standards Track PAGE 3
RFC 8261 SCTP over DTLS November 2017
a message of the application-layer protocol, the payload is passed to
the SCTP layer. The SCTP layer expects an SCTP common header
followed by a number of SCTP chunks.
4. General Considerations
An implementation of SCTP over DTLS MUST implement and use a path
maximum transmission unit (MTU) discovery method that functions
without ICMP to provide SCTP/DTLS with an MTU estimate. An
implementation of "Packetization Layer Path MTU Discovery" [RFC 4821]
either in SCTP or DTLS is RECOMMENDED.
The path MTU discovery is performed by SCTP when SCTP over DTLS is
used for data channels (see Section 5 of [DATA-CHAN]).
5. DTLS Considerations
The DTLS implementation MUST support DTLS 1.0 [RFC 4347] and SHOULD
support the most recently published version of DTLS, which was DTLS
1.2 [RFC 6347] when this RFC was published. In the absence of a
revision to this document, the latter requirement applies to all
future versions of DTLS when they are published as RFCs. This
document will only be revised if a revision to DTLS or SCTP makes a
revision to the encapsulation necessary.
SCTP performs segmentation and reassembly based on the path MTU.
Therefore, the DTLS layer MUST NOT use any compression algorithm.
The DTLS MUST support sending messages larger than the current path
MTU. This might result in sending IP-level fragmented messages.
If path MTU discovery is performed by the DTLS layer, the method
described in [RFC 4821] MUST be used. For probe packets, the
extension defined in [RFC 6520] MUST be used.
If path MTU discovery is performed by the SCTP layer and IPv4 is used
as the network-layer protocol, the DTLS implementation SHOULD allow
the DTLS user to enforce that the corresponding IPv4 packet is sent
with the Don't Fragment (DF) bit set. If controlling the DF bit is
not possible (for example, due to implementation restrictions), a
safe value for the path MTU has to be used by the SCTP stack. It is
RECOMMENDED that the safe value not exceed 1200 bytes. Please note
that [RFC 1122] only requires that end hosts be able to reassemble
fragmented IP packets up to 576 bytes in length.
The DTLS implementation SHOULD allow the DTLS user to set the
Differentiated Services Code Point (DSCP) used for IP packets being
sent (see [RFC 2474]). This requires the DTLS implementation to pass
Tuexen, et al. Standards Track PAGE 4
RFC 8261 SCTP over DTLS November 2017
the value through and the lower layer to allow setting this value.
If the lower layer does not support setting the DSCP, then the DTLS
user will end up with the default value used by the protocol stack.
Please note that only a single DSCP value can be used for all packets
belonging to the same SCTP association.
Using Explicit Congestion Notification (ECN) in SCTP requires the
DTLS layer to pass the ECN bits through and its lower layer to expose
access to them for sent and received packets (see [RFC 3168]). The
implementations of DTLS and its lower layer have to provide this
support. If this is not possible (for example, due to implementation
restrictions), ECN can't be used by SCTP.
6. SCTP Considerations
This section describes the usage of the base protocol and the
applicability of various SCTP extensions.
6.1. Base Protocol
This document uses SCTP [RFC 4960] with the following restrictions,
which are required to reflect that the lower layer is DTLS instead of
IPv4 and IPv6 and that SCTP does not deal with the IP addresses or
the transport protocol used below DTLS:
o A DTLS connection MUST be established before an SCTP association
can be set up.
o Multiple SCTP associations MAY be multiplexed over a single DTLS
connection. The SCTP port numbers are used for multiplexing and
demultiplexing the SCTP associations carried over a single DTLS
connection.
o All SCTP associations are single-homed, because DTLS does not
expose any address management to its upper layer. Therefore, it
is RECOMMENDED to set the SCTP parameter path.max.retrans to
association.max.retrans.
o The INIT and INIT-ACK chunk MUST NOT contain any IPv4 Address or
IPv6 Address parameters. The INIT chunk MUST NOT contain the
Supported Address Types parameter.
o The implementation MUST NOT rely on processing ICMP or ICMPv6
packets, since the SCTP layer most likely is unable to access the
SCTP common header in the plain text of the packet, which
triggered the sending of the ICMP or ICMPv6 packet. This applies
in particular to path MTU discovery when performed by SCTP.
Tuexen, et al. Standards Track PAGE 5
RFC 8261 SCTP over DTLS November 2017
o If the SCTP layer is notified about a path change by its lower
layers, SCTP SHOULD retest the path MTU and reset the congestion
state to the initial state. The window-based congestion control
method specified in [RFC 4960] resets the congestion window and
slow-start threshold to their initial values.
6.2. Padding Extension
When the SCTP layer performs path MTU discovery as specified in
[RFC 4821], the padding extension defined in [RFC 4820] MUST be
supported and used for probe packets (HEARTBEAT chunks bundled with
PADDING chunks [RFC 4820]).
6.3. Dynamic Address Reconfiguration Extension
If the dynamic address reconfiguration extension defined in [RFC 5061]
is used, ASCONF chunks MUST use wildcard addresses only.
6.4. SCTP Authentication Extension
The SCTP authentication extension defined in [RFC 4895] can be used
with DTLS encapsulation, but does not provide any additional benefit.
6.5. Partial Reliability Extension
Partial reliability as defined in [RFC 3758] can be used in
combination with DTLS encapsulation. It is also possible to use
additional Partially Reliable Stream Control Transmission Protocol
(PR-SCTP) policies, for example, the ones defined in [RFC 7496].
6.6. Stream Reset Extension
The SCTP stream reset extension defined in [RFC 6525] can be used with
DTLS encapsulation. It is used to reset SCTP streams and add SCTP
streams during the lifetime of the SCTP association.
6.7. Interleaving of Large User Messages
SCTP as defined in [RFC 4960] does not support the interleaving of
large user messages that need to be fragmented and reassembled by the
SCTP layer. The protocol extension defined in [RFC 8260] overcomes
this limitation and can be used with DTLS encapsulation.
7. IANA Considerations
This document does not require any IANA actions.
Tuexen, et al. Standards Track PAGE 6
RFC 8261 SCTP over DTLS November 2017
8. Security Considerations
Security considerations for DTLS are specified in [RFC 4347] and for
SCTP in [RFC 4960], [RFC 3758], and [RFC 6525]. The combination of SCTP
and DTLS introduces no new security considerations.
SCTP should not process the IP addresses used for the underlying
communication since DTLS provides no guarantees about them.
It should be noted that the inability to process ICMP or ICMPv6
messages does not add any security issue. When SCTP is carried over
a connection-less lower layer like IPv4, IPv6, or UDP, processing of
these messages is required to protect other nodes not supporting
SCTP. Since DTLS provides a connection-oriented lower layer, this
kind of protection is not necessary.
9. References
9.1. Normative References
[RFC 1122] Braden, R., Ed., "Requirements for Internet Hosts -
Communication Layers", STD 3, RFC 1122,
DOI 10.17487/RFC 1122, October 1989,
<https://www.rfc-editor.org/info/RFC 1122>.
[RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC 2119, March 1997,
<https://www.rfc-editor.org/info/RFC 2119>.
[RFC 4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security", RFC 4347, DOI 10.17487/RFC 4347, April 2006,
<https://www.rfc-editor.org/info/RFC 4347>.
[RFC 4820] Tuexen, M., Stewart, R., and P. Lei, "Padding Chunk and
Parameter for the Stream Control Transmission Protocol
(SCTP)", RFC 4820, DOI 10.17487/RFC 4820, March 2007,
<https://www.rfc-editor.org/info/RFC 4820>.
[RFC 4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
Discovery", RFC 4821, DOI 10.17487/RFC 4821, March 2007,
<https://www.rfc-editor.org/info/RFC 4821>.
[RFC 4960] Stewart, R., Ed., "Stream Control Transmission Protocol",
RFC 4960, DOI 10.17487/RFC 4960, September 2007,
<https://www.rfc-editor.org/info/RFC 4960>.
Tuexen, et al. Standards Track PAGE 7
RFC 8261 SCTP over DTLS November 2017
[RFC 6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security Version 1.2", RFC 6347, DOI 10.17487/RFC 6347,
January 2012, <https://www.rfc-editor.org/info/RFC 6347>.
[RFC 6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension", RFC 6520,
DOI 10.17487/RFC 6520, February 2012,
<https://www.rfc-editor.org/info/RFC 6520>.
[RFC 8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC 8174,
May 2017, <https://www.rfc-editor.org/info/RFC 8174>.
9.2. Informative References
[DATA-CHAN]
Jesup, R., Loreto, S., and M. Tuexen, "WebRTC Data
Channels", Work in Progress, draft-ietf-rtcweb-data-
channel-13, January 2015.
[RFC 791] Postel, J., "Internet Protocol", STD 5, RFC 791,
DOI 10.17487/RFC 791, September 1981,
<https://www.rfc-editor.org/info/RFC 791>.
[RFC 2474] Nichols, K., Blake, S., Baker, F., and D. Black,
"Definition of the Differentiated Services Field (DS
Field) in the IPv4 and IPv6 Headers", RFC 2474,
DOI 10.17487/RFC 2474, December 1998,
<https://www.rfc-editor.org/info/RFC 2474>.
[RFC 3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
of Explicit Congestion Notification (ECN) to IP",
RFC 3168, DOI 10.17487/RFC 3168, September 2001,
<https://www.rfc-editor.org/info/RFC 3168>.
[RFC 3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
Conrad, "Stream Control Transmission Protocol (SCTP)
Partial Reliability Extension", RFC 3758,
DOI 10.17487/RFC 3758, May 2004,
<https://www.rfc-editor.org/info/RFC 3758>.
[RFC 4895] Tuexen, M., Stewart, R., Lei, P., and E. Rescorla,
"Authenticated Chunks for the Stream Control Transmission
Protocol (SCTP)", RFC 4895, DOI 10.17487/RFC 4895, August
2007, <https://www.rfc-editor.org/info/RFC 4895>.
Tuexen, et al. Standards Track PAGE 8
RFC 8261 SCTP over DTLS November 2017
[RFC 5061] Stewart, R., Xie, Q., Tuexen, M., Maruyama, S., and M.
Kozuka, "Stream Control Transmission Protocol (SCTP)
Dynamic Address Reconfiguration", RFC 5061,
DOI 10.17487/RFC 5061, September 2007,
<https://www.rfc-editor.org/info/RFC 5061>.
[RFC 5245] Rosenberg, J., "Interactive Connectivity Establishment
(ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols", RFC 5245,
DOI 10.17487/RFC 5245, April 2010,
<https://www.rfc-editor.org/info/RFC 5245>.
[RFC 6525] Stewart, R., Tuexen, M., and P. Lei, "Stream Control
Transmission Protocol (SCTP) Stream Reconfiguration",
RFC 6525, DOI 10.17487/RFC 6525, February 2012,
<https://www.rfc-editor.org/info/RFC 6525>.
[RFC 6951] Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream
Control Transmission Protocol (SCTP) Packets for End-Host
to End-Host Communication", RFC 6951,
DOI 10.17487/RFC 6951, May 2013,
<https://www.rfc-editor.org/info/RFC 6951>.
[RFC 7496] Tuexen, M., Seggelmann, R., Stewart, R., and S. Loreto,
"Additional Policies for the Partially Reliable Stream
Control Transmission Protocol Extension", RFC 7496,
DOI 10.17487/RFC 7496, April 2015,
<https://www.rfc-editor.org/info/RFC 7496>.
[RFC 8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
(IPv6) Specification", STD 86, RFC 8200,
DOI 10.17487/RFC 8200, July 2017,
<https://www.rfc-editor.org/info/RFC 8200>.
[RFC 8260] Stewart, R., Tuexen, M., Loreto, S., and R. Seggelmann,
"Stream Schedulers and User Message Interleaving for the
Stream Control Transmission Protocol", RFC 8260, November
2017.
[RTC-OVERVIEW]
Alvestrand, H., "Overview: Real Time Protocols for
Browser-based Applications", Work in Progress, draft-ietf-
rtcweb-overview-18, March 2017.
Tuexen, et al. Standards Track PAGE 9
RFC 8261 SCTP over DTLS November 2017
Acknowledgments
The authors wish to thank David Black, Benoit Claise, Spencer
Dawkins, Francis Dupont, Gorry Fairhurst, Stephen Farrell, Christer
Holmberg, Barry Leiba, Eric Rescorla, Tom Taylor, Joe Touch, and
Magnus Westerlund for their invaluable comments.
Authors' Addresses
Michael Tuexen
Muenster University of Applied Sciences
Stegerwaldstrasse 39
48565 Steinfurt
Germany
Email: tuexen@fh-muenster.de
Randall R. Stewart
Netflix, Inc.
Chapin, SC 29036
United States of America
Email: randall@lakerest.net
Randell Jesup
WorldGate Communications
3800 Horizon Blvd, Suite #103
Trevose, PA 19053-4947
United States of America
Phone: +1-215-354-5166
Email: randell-ietf@jesup.org
Salvatore Loreto
Ericsson
Hirsalantie 11
Jorvas 02420
Finland
Email: Salvatore.Loreto@ericsson.com
Tuexen, et al. Standards Track PAGE 10
RFC TOTAL SIZE: 21035 bytes
PUBLICATION DATE: Thursday, November 16th, 2017
LEGAL RIGHTS: The IETF Trust (see BCP 78)
|