The RFC Archive
 The RFC Archive   RFC 8848   « Jump to any RFC number directly 
 RFC Home
Full RFC Index
Recent RFCs
RFC Standards
Best Current Practice
RFC Errata
1 April RFC



IETF RFC 8848



Last modified on Monday, January 18th, 2021

Permanent link to RFC 8848
Search GitHub Wiki for RFC 8848
Show other RFCs mentioning RFC 8848





Internet Engineering Task Force (IETF)                         R. Hanton
Request for Comments: 8848                                 Cisco Systems
Category: Experimental                                      P. Kyzivat
ISSN: 2070-1721                                                         
                                                                 L. Xiao
                                                Beijing Chuangshiyoulian
                                                               C. Groves
                                                            January 2021


  Session Signaling for Controlling Multiple Streams for Telepresence
                                 (CLUE)

 Abstract

   This document is about Controlling Multiple Streams for Telepresence
   (CLUE) signaling.  It specifies how the CLUE protocol and the CLUE
   data channel are used in conjunction with each other and with
   existing signaling mechanisms, such as SIP and the Session
   Description Protocol (SDP), to produce a telepresence call.

 Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for examination, experimental implementation, and
   evaluation.

   This document defines an Experimental Protocol for the Internet
   community.  This document is a product of the Internet Engineering
   Task Force (IETF).  It represents the consensus of the IETF
   community.  It has received public review and has been approved for
   publication by the Internet Engineering Steering Group (IESG).  Not
   all documents approved by the IESG are candidates for any level of
   Internet Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/RFC 8848.

 Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

 Table of Contents

   1.  Introduction
   2.  Terminology
   3.  Media Feature Tag Definition
   4.  SDP Grouping Framework CLUE Extension Semantics
     4.1.  General
     4.2.  The CLUE Data Channel and the CLUE Grouping Semantic
     4.3.  CLUE-Controlled Media and the CLUE Grouping Semantic
     4.4.  SDP Semantics for CLUE-Controlled Media
       4.4.1.  Signaling CLUE Encodings
         4.4.1.1.  Referencing Encodings in the CLUE Protocol
       4.4.2.  Negotiating Receipt of CLUE Capture Encodings in SDP
     4.5.  SDP Offer/Answer Procedures
       4.5.1.  Generating the Initial Offer
       4.5.2.  Generating the Answer
         4.5.2.1.  Negotiating Use of CLUE and the CLUE Data Channel
         4.5.2.2.  Negotiating CLUE-Controlled Media
         4.5.2.3.  Negotiating Non-CLUE-controlled Media
       4.5.3.  Processing the Initial Offer/Answer Negotiation
         4.5.3.1.  Successful CLUE Negotiation
         4.5.3.2.  CLUE Negotiation Failure
       4.5.4.  Modifying the Session
         4.5.4.1.  Adding and Removing CLUE-Controlled Media
         4.5.4.2.  Enabling CLUE Mid-Call
         4.5.4.3.  Disabling CLUE Mid-Call
         4.5.4.4.  CLUE Protocol Failure Mid-Call
   5.  Interaction of the CLUE Protocol and SDP Negotiations
     5.1.  Independence of SDP and CLUE Negotiation
     5.2.  Constraints on Sending Media
     5.3.  Recommendations for Operating with Non-atomic Operations
   6.  Interaction of the CLUE Protocol and RTP/RTCP CaptureID
     6.1.  CaptureID Reception during MCC Redefinition
   7.  Multiplexing of CLUE-Controlled Media Using BUNDLE
     7.1.  Overview
     7.2.  Usage of BUNDLE with CLUE
       7.2.1.  Generating the Initial Offer
       7.2.2.  Multiplexing of the Data Channel and RTP Media
   8.  Example: A Call between Two CLUE-Capable Endpoints
   9.  Example: A Call between a CLUE-Capable and Non-CLUE Endpoint
   10. IANA Considerations
     10.1.  New SDP Grouping Framework Attribute
     10.2.  New SIP Media Feature Tag
   11. Security Considerations
   12. References
     12.1.  Normative References
     12.2.  Informative References
   Acknowledgements
   Authors' Addresses

1.  Introduction

   To enable devices to participate in a telepresence call, where they
   select the sources they wish to view, receive those media sources,
   and display them in an optimal fashion, Controlling Multiple Streams
   for Telepresence (CLUE) employs two principal and interrelated
   protocol negotiations.  SDP [RFC 4566], conveyed via SIP [RFC 3261], is
   used to negotiate the specific media capabilities that can be
   delivered to specific addresses on a device.  Meanwhile, CLUE
   protocol messages [RFC 8847], transported via a CLUE data channel
   [RFC 8850], are used to negotiate the Capture Sources available, their
   attributes, and any constraints in their use.  They also allow the
   far-end device to specify which Captures they wish to receive.  It is
   recommended that those documents be read prior to this one as this
   document assumes familiarity with those protocols and hence uses
   terminology from each with limited introduction.

   Beyond negotiating the CLUE channel, SDP is also used to negotiate
   the details of supported media streams and the maximum capability of
   each of those streams.  As the CLUE Framework [RFC 8845] defines a
   manner in which the Media Provider expresses their maximum Encoding
   Group capabilities, SDP is also used to express the encoding limits
   for each potential Encoding.

   Backwards compatibility is an important consideration of the
   protocol: it is vital that a CLUE-capable device contacting a device
   that does not support CLUE is able to fall back to a fully functional
   non-CLUE call.  The document also defines how a non-CLUE call may be
   upgraded to CLUE mid-call and, similarly, how CLUE functionality can
   be removed mid-call to return to a standard non-CLUE call.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC 2119] [RFC 8174] when, and only when, they appear in all
   capitals, as shown here.

   This document uses terminology defined in the CLUE Framework
   [RFC 8845].

   A few additional terms specific to this document are defined as
   follows:

   CLUE-controlled media:  A media "m=" line that is under CLUE control;
      the Capture Source that provides the media on this "m=" line is
      negotiated in CLUE.  See Section 4 for details on how this control
      is signaled in SDP.  There is a corresponding "non-CLUE-
      controlled" media term.

   non-CLUE device:  A device that supports standard SIP and SDP but
      either does not support CLUE or does support CLUE but does not
      currently wish to invoke CLUE capabilities.

   RTCP:  RTP Control Protocol.

   SCTP:  Stream Control Transmission Protocol.

   STUN:  Session Traversal Utilities for NAT.

3.  Media Feature Tag Definition

   The "sip.clue" media feature tag [RFC 3840] indicates support for CLUE
   in SIP [RFC 3261] calls.  A CLUE-capable device SHOULD include this
   media feature tag in its REGISTER requests and OPTION responses.  It
   SHOULD also include the media feature tag in INVITE and UPDATE
   [RFC 3311] requests and responses.

   Presence of the media feature tag in the contact field of a request
   or response can be used to determine that the far end supports CLUE.

4.  SDP Grouping Framework CLUE Extension Semantics

4.1.  General

   This section defines a new SDP Grouping Framework [RFC 5888] extension
   called 'CLUE'.

   The CLUE extension can be indicated using an SDP session-level
   'group' attribute.  Each SDP media "m=" line that is included in this
   group, using SDP media-level mid attributes, is CLUE controlled by a
   CLUE data channel that is also included in this CLUE group.

   Currently, only support for a single CLUE group is specified; support
   for multiple CLUE groups in a single session is outside the scope of
   this document.  A device MUST NOT include more than one CLUE group in
   its SDP message unless it is following a specification that defines
   how multiple CLUE channels are signaled and is able to either
   determine that the other side of the SDP exchange supports multiple
   CLUE channels or fail gracefully in the event it does not.

4.2.  The CLUE Data Channel and the CLUE Grouping Semantic

   The CLUE data channel [RFC 8850] is a bidirectional data channel
   [RFC 8831] used for the transport of CLUE messages, conveyed within an
   SCTP over DTLS connection.  This channel must be established before
   CLUE protocol messages can be exchanged and CLUE-controlled media can
   be sent.

   The data channel is negotiated over SDP as described in [RFC 8864].  A
   CLUE-capable device wishing to negotiate CLUE MUST also include a
   CLUE group in their SDP Offer or Answer and include the "mid" of the
   "m=" line for the data channel in that group.  The CLUE group MUST
   include the "mid" of the "m=" line for one (and only one) data
   channel.

   Presence of the data channel in the CLUE group in an SDP Offer or
   Answer also serves, along with the "sip.clue" media feature tag, as
   an indication that the device supports CLUE and wishes to upgrade the
   call to include CLUE-controlled media.  A CLUE-capable device SHOULD
   include a data channel "m=" line in offers and, when allowed by
   [RFC 3264], answers.

4.3.  CLUE-Controlled Media and the CLUE Grouping Semantic

   CLUE-controlled media lines in an SDP are "m=" lines in which the
   content of the media streams to be sent is negotiated via the CLUE
   protocol [RFC 8847].  For an "m=" line to be CLUE controlled, its
   "mid" attribute value MUST be included in the CLUE group.  CLUE-
   controlled media is controlled by the CLUE protocol as negotiated on
   the CLUE data channel with a "mid" included in the CLUE group.

   "m=" lines not specified as being under CLUE control follow normal
   rules for media streams negotiated in SDP as defined in documents
   such as [RFC 3264].

   The restrictions on CLUE-controlled media that are defined below
   always apply to "m=" lines in an SDP Offer or Answer, even if
   negotiation of the data channel in SDP failed due to lack of CLUE
   support by the remote device or for any other reason, or in an offer
   if the recipient does not include the "mid" of the corresponding "m="
   line in their CLUE group.

4.4.  SDP Semantics for CLUE-Controlled Media

4.4.1.  Signaling CLUE Encodings

   The CLUE Framework [RFC 8845] defines the concept of "Encodings",
   which represent the sender's encode ability.  Each Encoding the Media
   Provider wishes to signal is done so via an "m=" line of the
   appropriate media type, which MUST be marked as sendonly with the
   "a=sendonly" attribute or as inactive with the "a=inactive"
   attribute.

   The encoder limits of active (e.g., "a=sendonly") Encodings can then
   be expressed using existing SDP syntax.  For instance, for H.264, see
   Table 6 in Section 8.2.2 of [RFC 6184] for a list of valid parameters
   for representing encoder sender stream limits.

   These Encodings are CLUE controlled and hence MUST include a "mid" in
   the CLUE group as defined above.

   In addition to the normal restrictions defined in [RFC 3264], the
   stream MUST be treated as if the "m=" line direction attribute had
   been set to "a=inactive" until the Media Provider has received a
   valid CLUE 'configure' message specifying the Capture to be used for
   this stream.  This means that RTP packets MUST NOT be sent until
   configuration is complete, while non-media packets such as STUN,
   RTCP, and DTLS MUST be sent as per their relevant specifications, if
   negotiated.

   Every "m=" line representing a CLUE Encoding MUST contain a "label"
   attribute as defined in [RFC 4574].  This label is used to identify
   the Encoding by the sender in CLUE 'advertisement' messages and by
   the receiver in CLUE 'configure' messages.  Each label used for a
   CLUE-controlled "m=" line MUST be different from the label on all
   other "m=" lines in the CLUE group, unless an "m=" line represents a
   dependent stream related to another "m=" line (such as a Forward
   Error Correction (FEC) stream), in which case it MUST have the same
   label value as the "m=" line on which it depends.

4.4.1.1.  Referencing Encodings in the CLUE Protocol

   CLUE Encodings are defined in SDP but can be referenced from CLUE
   protocol messages -- this is how the protocol defines which Encodings
   are a part of an Encoding Group (in 'advertisement' messages) and
   which Encoding is used to encode a specific Capture (in 'configure'
   messages).  The labels on the CLUE-controlled "m=" lines are the
   references that are used in the CLUE protocol.

   Each <encID> (in encodingIDList) in a CLUE 'advertisement' message
   SHOULD represent an Encoding defined in SDP; the specific Encoding
   referenced is a CLUE-controlled "m=" line in the most recent SDP
   Offer/Answer message sent by the sender of the 'advertisement'
   message with a label value corresponding to the text content of the
   <encID>.  If the <encID> is not defined in SDP, it MUST be one it
   anticipates sending in a subsequent SDP Offer/Answer exchange.

   Each <encodingID> (in captureEncodingType) in a CLUE 'configure'
   message MUST represent an Encoding defined in SDP; the specific
   Encoding referenced is a CLUE-controlled "m=" line in the most recent
   SDP Offer/Answer message received by the sender of the 'configure'
   message with a label value corresponding to the text content of the
   <encodingID>.

   Note that the non-atomic nature of SDP/CLUE protocol interaction may
   mean that there are temporary periods where an <encID>/<encodingID>
   in a CLUE message does not reference an SDP "m=" line, or where an
   Encoding represented in SDP is not referenced in a CLUE protocol
   message.  See Section 5 for specifics.

4.4.2.  Negotiating Receipt of CLUE Capture Encodings in SDP

   A receiver who wishes to receive a CLUE stream via a specific
   Encoding requires an "a=recvonly" "m=" line that matches the
   "a=sendonly" Encoding.

   These "m=" lines are CLUE controlled and hence MUST include their
   "mid" in the CLUE group.  They MAY include a "label" attribute, but
   this is not required by CLUE, as only label values associated with
   "a=sendonly" Encodings are referenced by CLUE protocol messages.

4.5.  SDP Offer/Answer Procedures

4.5.1.  Generating the Initial Offer

   A CLUE-capable device sending an initial SDP Offer of a SIP session
   and wishing to negotiate CLUE will include an "m=" line for the data
   channel to convey the CLUE protocol, along with a CLUE group
   containing the "mid" of the data channel "m=" line.

   For interoperability with non-CLUE devices, a CLUE-capable device
   sending an initial SDP Offer SHOULD NOT include any "m=" line for
   CLUE-controlled media beyond the "m=" line for the CLUE data channel,
   and it SHOULD include at least one non-CLUE-controlled media "m="
   line.

   If the device has evidence that the receiver is also CLUE capable,
   for instance, due to receiving an initial INVITE with no SDP but
   including a "sip.clue" media feature tag, the above recommendation is
   waived, and the initial offer MAY contain "m=" lines for CLUE-
   controlled media.

   With the same interoperability recommendations as for Encodings, the
   sender of the initial SDP Offer MAY also include "a=recvonly" media
   lines to preallocate "m=" lines to receive media.  Alternatively, it
   MAY wait until CLUE protocol negotiation has completed before
   including these lines in a new offer/answer exchange -- see Section 5
   for recommendations.

4.5.2.  Generating the Answer

4.5.2.1.  Negotiating Use of CLUE and the CLUE Data Channel

   If the recipient of an initial offer is CLUE capable, and the offer
   contains both an "m=" line for a data channel and a CLUE group
   containing the "mid" for that "m=" line, they SHOULD negotiate data
   channel support for an "m=" line and include the "mid" of that "m="
   line in a corresponding CLUE group.

   A CLUE-capable recipient that receives an "m=" line for a data
   channel but no corresponding CLUE group containing the "mid" of that
   "m=" line MAY still include a corresponding data channel "m=" line if
   there are any other non-CLUE protocols it can convey over that
   channel, but the use of the CLUE protocol MUST NOT be negotiated on
   this channel.

4.5.2.2.  Negotiating CLUE-Controlled Media

   If the initial offer contained "a=recvonly" CLUE-controlled media
   lines, the recipient SHOULD include corresponding "a=sendonly" CLUE-
   controlled media lines for accepted Encodings, up to the maximum
   number of Encodings it wishes to advertise.  As CLUE-controlled
   media, the "mid" of these "m=" lines MUST be included in the
   corresponding CLUE group.  The recipient MUST set the direction of
   the corresponding "m=" lines of any remaining "a=recvonly" CLUE-
   controlled media lines received in the offer to "a=inactive".

   If the initial offer contained "a=sendonly" CLUE-controlled media
   lines, the recipient MAY include corresponding "a=recvonly" CLUE-
   controlled media lines, up to the maximum number of Capture Encodings
   it wishes to receive.  Alternatively, it MAY wait until CLUE protocol
   negotiation has completed before including these lines in a new
   offer/answer exchange -- see Section 5 for recommendations.  The
   recipient MUST set the direction of the corresponding "m=" lines of
   any remaining "a=sendonly" CLUE-controlled media lines received in
   the offer to "a=inactive".

4.5.2.3.  Negotiating Non-CLUE-controlled Media

   A CLUE-controlled device implementation MAY prefer to render initial,
   single-stream audio and/or video for the user as rapidly as possible,
   transitioning to CLUE-controlled media once that has been negotiated.
   Alternatively, an implementation MAY wish to suppress initial media,
   only providing media once the final, CLUE-controlled streams have
   been negotiated.

   The receiver of the initial offer, if making the call CLUE-enabled
   with their SDP Answer, can make their preference clear by their
   action in accepting or rejecting non-CLUE-controlled media lines.
   Rejecting these "m=" lines will ensure that no non-CLUE-controlled
   media flows before the CLUE-controlled media is negotiated.  In
   contrast, accepting one or more non-CLUE-controlled "m=" lines in
   this initial answer will enable initial media to flow.

   If the answerer chooses to send initial non-CLUE-controlled media in
   a CLUE-enabled call, Section 4.5.4.1 addresses the need to disable it
   once the CLUE-controlled media is fully negotiated.

4.5.3.  Processing the Initial Offer/Answer Negotiation

   In the event that both the offer and answer include a data channel
   "m=" line with a "mid" value included in corresponding CLUE groups,
   CLUE has been successfully negotiated, and the call is now CLUE
   enabled.  If not, then the call is not CLUE enabled.

4.5.3.1.  Successful CLUE Negotiation

   In the event of successful CLUE enablement of the call, devices MUST
   now begin negotiation of the CLUE channel; see [RFC 8850] for
   negotiation details.  If negotiation is successful, the sending of
   CLUE protocol messages [RFC 8847] can begin.

   A CLUE-capable device MAY choose not to send RTP on the non-CLUE-
   controlled channels during the period in which control of the CLUE-
   controlled media lines is being negotiated (though RTCP MUST still be
   sent and received as normal).  However, a CLUE-capable device MUST
   still be prepared to receive media on non-CLUE-controlled media lines
   that have been successfully negotiated as defined in [RFC 3264].

   If either side of the call wishes to add additional CLUE-controlled
   "m=" lines to send or receive CLUE-controlled media, they MAY now
   send a SIP request with a new SDP Offer following the normal rules of
   SDP Offer/Answer and any negotiated extensions.

4.5.3.2.  CLUE Negotiation Failure

   In the event that the negotiation of CLUE fails and the call is not
   CLUE enabled once the initial offer/answer negotiation completes,
   then CLUE is not in use in the call.  CLUE-capable devices MUST
   either revert to non-CLUE behavior or terminate the call.

4.5.4.  Modifying the Session

4.5.4.1.  Adding and Removing CLUE-Controlled Media

   Subsequent offer/answer exchanges MAY add additional "m=" lines for
   CLUE-controlled media or activate or deactivate existing "m=" lines
   per the standard SDP mechanisms.

   In most cases, at least one additional exchange after the initial
   offer/answer exchange will be required before both sides have added
   all the Encodings and the ability to receive Encodings that they
   desire.  Devices MAY delay adding "a=recvonly" CLUE-controlled "m="
   lines until after CLUE protocol negotiation completes -- see
   Section 5 for recommendations.

   Once CLUE media has been successfully negotiated, devices SHOULD
   ensure that non-CLUE-controlled media is deactivated by setting their
   ports to 0 in cases where it corresponds to the media type of CLUE-
   controlled media that has been successfully negotiated.  This
   deactivation may require an additional SDP exchange or may be
   incorporated into one that is part of the CLUE negotiation.

4.5.4.2.  Enabling CLUE Mid-Call

   A CLUE-capable device that receives an initial SDP Offer from a non-
   CLUE device SHOULD include a new data channel "m=" line and
   corresponding CLUE group in any subsequent offers it sends, to
   indicate that it is CLUE capable.

   If, in an ongoing non-CLUE call, an SDP Offer/Answer exchange
   completes with both sides having included a data channel "m=" line in
   their SDP and with the "mid" for that channel in a corresponding CLUE
   group, then the call is now CLUE enabled; negotiation of the data
   channel and subsequently the CLUE protocol begins.

4.5.4.3.  Disabling CLUE Mid-Call

   If, during an ongoing CLUE-enabled call, a device wishes to disable
   CLUE, it can do so by following the procedures for closing a data
   channel as defined in Section 6.6.1 of [RFC 8864]: sending a new SDP
   Offer/Answer exchange and subsequent SCTP Stream Sequence Number
   (SSN) reset for the CLUE channel.  It MUST also remove the CLUE
   group.  Without the CLUE group, any "m=" lines that were previously
   CLUE controlled no longer are; implementations MAY disable them by
   setting their ports to 0 or MAY continue to use them -- in the latter
   case, how they are used is outside the scope of this document.

   If a device follows the procedure above, or an SDP Offer/Answer
   negotiation completes in a fashion in which either the "m=" CLUE data
   channel line was not successfully negotiated and/or one side did not
   include the data channel in the CLUE group, then CLUE for this call
   is disabled.  In the event that this occurs, CLUE is no longer
   enabled.  Any active "m=" lines still included in the CLUE group are
   no longer CLUE controlled, and the implementation MAY either disable
   them in a subsequent negotiation or continue to use them in some
   other fashion.  If the data channel is still present but not included
   in the CLUE group semantic, CLUE protocol messages MUST no longer be
   sent.

4.5.4.4.  CLUE Protocol Failure Mid-Call

   In contrast to the specific disablement of the use of CLUE described
   above, the CLUE channel may fail unexpectedly.  Two circumstances
   where this can occur are:

   *  The CLUE data channel terminates, either gracefully or
      ungracefully, without any corresponding SDP renegotiation.

   *  A channel error of the CLUE protocol causes it to return to the
      IDLE state as defined in Section 6 of [RFC 8847].

   In this circumstance, implementations SHOULD continue to transmit and
   receive CLUE-controlled media on the basis of the last negotiated
   CLUE messages, until the CLUE protocol is re-established (in the
   event of a channel error) or disabled mid-call by an SDP exchange as
   defined in Section 4.5.4.3.  Implementations MAY choose to send such
   an SDP request to disable CLUE immediately or MAY continue on in a
   call-preservation mode.

5.  Interaction of the CLUE Protocol and SDP Negotiations

   Information about media streams in CLUE is split between two message
   types: SDP, which defines media addresses and limits, and the CLUE
   channel, which defines properties of Capture Devices available, scene
   information, and additional constraints.  As a result, certain
   operations, such as advertising support for a new transmissible
   Capture with an associated stream, cannot be performed atomically, as
   they require changes to both SDP and CLUE messaging.

   This section defines how the negotiation of the two protocols
   interact, provides some recommendations on dealing with intermediate
   stages in non-atomic operations, and mandates additional constraints
   on when CLUE-configured media can be sent.

5.1.  Independence of SDP and CLUE Negotiation

   To avoid the need to implement interlocking state machines with the
   potential to reach invalid states if messages were to be lost, or be
   rewritten en route by middleboxes, the state machines in SDP and CLUE
   operate independently.  The state of the CLUE channel does not
   restrict when an implementation may send a new SDP Offer or Answer;
   likewise, the implementation's ability to send a new CLUE
   'advertisement' or 'configure' message is not restricted by the
   results of or the state of the most recent SDP negotiation (unless
   the SDP negotiation has removed the CLUE channel).

   The primary implication of this is that a device may receive an SDP
   Offer/Answer message with a CLUE Encoding for which it does not yet
   have Capture information or receive a CLUE 'configure' message
   specifying a Capture Encoding for which the far end has not
   negotiated a media stream in SDP.

   CLUE messages contain an <encID> (in encodingIDList) or <encodingID>
   (in captureEncodingType), which is used to identify a specific
   Encoding or captureEncoding in SDP; see [RFC 8846] for specifics.  The
   non-atomic nature of CLUE negotiation means that a sender may wish to
   send a new CLUE 'advertisement' message before the corresponding SDP
   message.  As such, the sender of the CLUE message MAY include an
   <encID> that does not currently match a CLUE-controlled "m=" line
   label in SDP; a CLUE-capable implementation MUST NOT reject a CLUE
   protocol message solely because it contains <encID> elements that do
   not match a label in SDP.

   The current state of the CLUE Participant or Media Provider/Consumer
   state machines does not affect compliance with any of the normative
   language of [RFC 3264].  That is, they MUST NOT delay an ongoing SDP
   exchange as part of a SIP server or client transaction; an
   implementation MUST NOT delay an SDP exchange while waiting for CLUE
   negotiation to complete or for a 'configure' message to arrive.

   Similarly, a device in a CLUE-enabled call MUST NOT delay any
   mandatory state transitions in the CLUE Participant or Media
   Provider/Consumer state machines due to the presence or absence of an
   ongoing SDP exchange.

   A device with the CLUE Participant state machine in the ACTIVE state
   MAY choose to delay moving from ESTABLISHED to ADV (Media Provider
   state machine) or from ESTABLISHED to WAIT FOR CONF RESPONSE (Media
   Consumer state machine) based on the SDP state.  See [RFC 8847] for
   CLUE state machine specifics.  Similarly, a device MAY choose to
   delay initiating a new SDP exchange based on the state of their CLUE
   state machines.

5.2.  Constraints on Sending Media

   While SDP and CLUE message states do not impose constraints on each
   other, both impose constraints on the sending of media -- CLUE-
   controlled media MUST NOT be sent unless it has been negotiated in
   both CLUE and SDP: an implementation MUST NOT send a specific CLUE
   Capture Encoding unless its most recent SDP exchange contains an
   active media channel for that Encoding AND it has received a CLUE
   'configure' message specifying a valid Capture for that Encoding.

5.3.  Recommendations for Operating with Non-atomic Operations

   CLUE-capable devices MUST be able to handle states in which CLUE
   messages make reference to EncodingIDs that do not match the most
   recently received SDP, irrespective of the order in which SDP and
   CLUE messages are received.  While these mismatches will usually be
   transitory, a device MUST be able to cope with such mismatches
   remaining indefinitely.  However, this document makes some
   recommendations on message ordering for these non-atomic transitions.

   CLUE-capable devices MUST ensure that any inconsistencies between SDP
   and CLUE signaling are temporary by sending updated SDP or CLUE
   messages as soon as the relevant state machines and other constraints
   permit.

   Generally, implementations that receive messages with incomplete
   information will be most efficient if they wait until they have the
   corresponding information they lack before sending messages to make
   changes related to that information.  For example, an answerer that
   receives a new SDP Offer with three new "a=sendonly" CLUE "m=" lines
   for which it has received no CLUE 'advertisement' message providing
   the corresponding capture information would typically include
   corresponding "a=inactive" lines in its answer, and it would only
   make a new SDP Offer with "a=recvonly" when and if a new
   'advertisement' message arrives with Captures relevant to those
   Encodings.

   Because of the constraints of SDP Offer/Answer and because new SDP
   negotiations are generally more 'costly' than sending a new CLUE
   message, implementations needing to make changes to both channels
   SHOULD prioritize sending the updated CLUE message over sending the
   new SDP message.  The aim is for the recipient to receive the CLUE
   changes before the SDP changes, allowing the recipient to send their
   SDP Answers without incomplete information and reducing the number of
   new SDP Offers required.

6.  Interaction of the CLUE Protocol and RTP/RTCP CaptureID

   The CLUE Framework [RFC 8845] allows for Multiple Content Captures
   (MCCs): Captures that contain multiple source Captures, whether
   composited into a single stream or switched based on some metric.

   The Captures that contribute to these MCCs may or may not be defined
   in the 'advertisement' message.  If they are defined and the MCC is
   providing them in a switched format, the recipient may wish to
   determine which originating source Capture is currently being
   provided, so that they can apply geometric corrections based on that
   Capture's geometry or take some other action based on the original
   Capture information.

   To do this, [RFC 8849] allows for the CaptureID of the originating
   Capture to be conveyed via RTP or RTCP.  A Media Provider sending
   switched media for an MCC with defined originating sources MUST send
   the CaptureID in both RTP and RTCP, as described in the mapping
   document.

6.1.  CaptureID Reception during MCC Redefinition

   Because the RTP/RTCP CaptureID is delivered via a different channel
   to the 'advertisement' message in which in the contents of the MCC
   are defined, there is an intrinsic race condition in cases where the
   contents of an MCC are redefined.

   When a Media Provider redefines an MCC that involves CaptureIDs, the
   reception of the relevant CaptureIDs by the recipient will either
   lead or lag reception and the processing of the new 'advertisement'
   message by the recipient.  As such, a Media Consumer MUST NOT be
   disrupted by any of the following scenarios in any CLUE-controlled
   media stream it is receiving, whether that stream is for a static
   Capture or for an MCC (as any static Capture may be redefined to an
   MCC in a later 'advertisement' message):

   *  By receiving RTP or RTCP containing a CaptureID when the most
      recently processed 'advertisement' message means that no media
      CaptureIDs are expected.

   *  By receiving RTP or RTCP without CaptureIDs when the most recently
      processed 'advertisement' message means that media CaptureIDs are
      expected.

   *  By receiving a CaptureID in RTP or RTCP for a Capture defined in
      the most recently processed 'advertisement' message, but which the
      same 'advertisement' message does not include in the MCC.

   *  By receiving a CaptureID in RTP or RTCP for a Capture not defined
      in the most recently processed 'advertisement' message.

7.  Multiplexing of CLUE-Controlled Media Using BUNDLE

7.1.  Overview

   A CLUE call may involve sending and/or receiving significant numbers
   of media streams.  Conventionally, media streams are sent and
   received on unique ports.  However, each separate port used for this
   purpose may impose costs that a device wishes to avoid, such as the
   need to open that port on firewalls and NATs, the need to collect
   Interactive Connectivity Establishment (ICE) candidates [RFC 8445],
   etc.

   The BUNDLE extension [RFC 8843] can be used to negotiate the
   multiplexing of multiple media lines onto a single 5-tuple for
   sending and receiving media, allowing devices in calls to another
   BUNDLE-supporting device to potentially avoid some of the above
   costs.

   While CLUE-capable devices MAY support the BUNDLE extension for this
   purpose, supporting the extension is not mandatory for a device to be
   CLUE compliant.

   A CLUE-capable device that supports BUNDLE SHOULD also support rtcp-
   mux [RFC 5761].  However, a CLUE-capable device that supports rtcp-mux
   may or may not support BUNDLE.

7.2.  Usage of BUNDLE with CLUE

   This specification imposes no additional requirements or restrictions
   on the usage of BUNDLE when used with CLUE.  There is no restriction
   on combining CLUE-controlled media lines and non-CLUE-controlled
   media lines in the same BUNDLE group or in multiple such groups.
   However, there are several steps an implementation may wish to take
   to ameliorate the cost and time requirements of extra SDP Offer/
   Answer exchanges between CLUE and BUNDLE.

7.2.1.  Generating the Initial Offer

   BUNDLE mandates that the initial SDP Offer MUST use a unique address
   for each "m=" line with a non-zero port.  Because CLUE
   implementations generally will not include CLUE-controlled media
   lines, with the exception of the data channel in the initial SDP
   Offer, CLUE devices that support large numbers of streams can avoid
   ever having to open large numbers of ports if they successfully
   negotiate BUNDLE.

   An implementation that does include CLUE-controlled media lines in
   its initial SDP Offer while also using BUNDLE must take care to avoid
   rendering its CLUE-controlled media lines unusable in the event the
   far end does not negotiate BUNDLE if it wishes to avoid the risk of
   additional SDP exchanges to resolve this issue.  This is best
   achieved by not sending any CLUE-controlled media lines in an initial
   offer with the 'bundle-only' attribute unless it has been established
   via some other channel that the recipient supports and is able to use
   BUNDLE.

7.2.2.  Multiplexing of the Data Channel and RTP Media

   BUNDLE-supporting CLUE-capable devices MAY include the data channel
   in the same BUNDLE group as RTP media.  In this case, the device MUST
   be able to demultiplex the various transports -- see Section 9.2 of
   the BUNDLE specification [RFC 8843].  If the BUNDLE group includes
   protocols other than the data channel transported via DTLS, the
   device MUST also be able to differentiate the various protocols.

8.  Example: A Call between Two CLUE-Capable Endpoints

   This example illustrates a call between two CLUE-capable Endpoints.
   Alice, initiating the call, is a system with three cameras and three
   screens.  Bob, receiving the call, is a system with two cameras and
   two screens.  A call-flow diagram is presented, followed by a summary
   of each message.

   To manage the size of this section, the SDP snippets only illustrate
   video "m=" lines.  SIP ACKs are not always discussed.  Note that
   BUNDLE is not in use.

                 +----------+                      +-----------+
                 |  Alice   |                      |    Bob    |
                 |          |                      |           |
                 +----+-----+                      +-----+-----+
                      |                                  |
                      |                                  |
                      | SIP INVITE 1                     |
                      |--------------------------------->|
                      |                                  |
                      |                                  |
                      |                     SIP 200 OK 1 |
                      |<---------------------------------|
                      |                                  |
                      |                                  |
                      | SIP ACK 1                        |
                      |--------------------------------->|
                      |                                  |
                      |                                  |
                      |                                  |
                      |<########### MEDIA 1 ############>|
                      |   1 video A->B, 1 video B->A     |
                      |<################################>|
                      |                                  |
                      |                                  |
                      |                                  |
                      |<================================>|
                      |   CLUE DATA CHANNEL ESTABLISHED  |
                      |<================================>|
                      |                                  |
                      |                                  |
                      | CLUE OPTIONS                     |
                      |<*********************************|
                      |                                  |
                      |                                  |
                      |            CLUE OPTIONS RESPONSE |
                      |*********************************>|
                      |                                  |
                      |                                  |
                      | CLUE ADVERTISEMENT 1             |
                      |*********************************>|
                      |                                  |
                      |                                  |
                      |             CLUE ADVERTISEMENT 2 |
                      |<*********************************|
                      |                                  |
                      |                                  |
                      | CLUE ACK 1                       |
                      |<*********************************|
                      |                                  |
                      |                                  |
                      |                       CLUE ACK 2 |
                      |*********************************>|
                      |                                  |
                      |                                  |
                      | SIP INVITE 2 (+3 sendonly)       |
                      |--------------------------------->|
                      |                                  |
                      |                                  |
                      |                 CLUE CONFIGURE 1 |
                      |<*********************************|
                      |                                  |
                      |                                  |
                      |       SIP 200 OK 2 (+2 recvonly) |
                      |<---------------------------------|
                      |                                  |
                      |                                  |
                      | CLUE CONFIGURE RESPONSE 1        |
                      |*********************************>|
                      |                                  |
                      |                                  |
                      | SIP ACK 2                        |
                      |--------------------------------->|
                      |                                  |
                      |                                  |
                      |                                  |
                      |<########### MEDIA 2 ############>|
                      |   2 video A->B, 1 video B->A     |
                      |<################################>|
                      |                                  |
                      |                                  |
                      |       SIP INVITE 3 (+2 sendonly) |
                      |<---------------------------------|
                      |                                  |
                      |                                  |
                      | CLUE CONFIGURE 2                 |
                      |*********************************>|
                      |                                  |
                      |                                  |
                      | SIP 200 OK 3 (+2 recvonly)       |
                      |--------------------------------->|
                      |                                  |
                      |                                  |
                      |        CLUE CONFIGURE RESPONSE 2 |
                      |<*********************************|
                      |                                  |
                      |                                  |
                      |                        SIP ACK 3 |
                      |<---------------------------------|
                      |                                  |
                      |                                  |
                      |                                  |
                      |<########### MEDIA 3 ############>|
                      |   2 video A->B, 2 video B->A     |
                      |<################################>|
                      |                                  |
                      |                                  |
                      |                                  |
                      v                                  v

   In SIP INVITE 1, Alice sends Bob a SIP INVITE with the basic audio
   and video capabilities and data channel included in the SIP body as
   per [RFC 8841].  Alice also includes the "sip.clue" media feature tag
   in the INVITE.  A snippet of the SDP showing the grouping attribute
   and the video "m=" line are shown below.  Alice has included a "CLUE"
   group and the mid corresponding to a data channel in the group (3).
   Note that Alice has chosen not to include any CLUE-controlled media
   in the initial offer -- the "mid" value of the video line is not
   included in the "CLUE" group.

      ...
      a=group:CLUE 3
      ...
      m=video 6002 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=sendrecv
      a=mid:2
      ...
      m=application 6100 UDP/DTLS/SCTP webrtc-datachannel
      a=setup:actpass
      a=sctp-port: 5000
      a=dcmap:2 subprotocol="CLUE";ordered=true
      a=mid:3

   Bob responds with a similar SDP in SIP 200 OK 1, which also has a
   "CLUE" group including the "mid" value of a data channel; due to
   their similarity, no SDP snippet is shown here.  Bob wishes to
   receive initial media and thus includes corresponding non-CLUE-
   controlled audio and video lines.  Bob also includes the "sip.clue"
   media feature tag in the 200 OK.  Alice and Bob are each now able to
   send a single audio and video stream.  This is illustrated as MEDIA
   1.

   With the successful initial SDP Offer/Answer exchange complete, Alice
   and Bob are also free to negotiate the CLUE data channel.  This is
   illustrated as CLUE DATA CHANNEL ESTABLISHED.

   Once the data channel is established, CLUE protocol negotiation
   begins.  In this case, Bob was the DTLS client (sending "a=active" in
   his SDP Answer) and hence is the CLUE Channel Initiator.  He sends a
   CLUE OPTIONS message describing his version support.  On receiving
   that message, Alice sends her corresponding CLUE OPTIONS RESPONSE.

   With the OPTIONS phase complete, Alice now sends her CLUE
   'advertisement' message (CLUE ADVERTISEMENT 1).  She advertises three
   static Captures representing her three cameras.  She also includes
   switched Captures suitable for systems with one or two screens.  All
   of these Captures are in a single Capture Scene, with suitable
   Capture Scene Views that tell Bob he should subscribe to the three
   static Captures, the two switched Captures, or the one switched
   Capture.  Alice has no simultaneity constraints, so all six Captures
   are included in one simultaneous set.  Finally, Alice includes an
   Encoding Group with three Encoding IDs: "enc1", "enc2", and "enc3".
   These Encoding IDs aren't currently valid but will match the next SDP
   Offer she sends.

   Bob received CLUE ADVERTISEMENT 1 but does not yet send a 'configure'
   message, because he has not yet received Alice's Encoding
   information; thus, he does not know if she will have sufficient
   resources in order to send him the two streams he ideally wants at a
   quality he is happy with.  Because Bob is not sending an immediate
   'configure' message with the "ack" element set, he must send an
   explicit 'ack' message (CLUE ACK 1) to signal receipt of CLUE
   ADVERTISEMENT 1.

   Bob also sends his CLUE 'advertisement' message (CLUE ADVERTISEMENT
   2) -- though the diagram shows that this occurs after Alice sends
   CLUE ADVERTISEMENT 1, Bob sends his 'advertisement' message
   independently and does not wait for CLUE ADVERTISEMENT 1 to arrive.
   He advertises two static Captures representing his cameras.  He also
   includes a single composed Capture for single-screen systems, in
   which he will composite the two camera views into a single video
   stream.  All three Captures are in a single Capture Scene, with
   suitable Capture Scene Views that tell Alice she should subscribe to
   either the two static Captures or the single composed Capture.  Bob
   also has no simultaneity constraints, so he includes all three
   Captures in one simultaneous set.  Bob also includes a single
   Encoding Group with two Encoding IDs: "foo" and "bar".

   Similarly, Alice receives CLUE ADVERTISEMENT 2 but does not yet send
   a 'configure' message, because she has not yet received Bob's
   Encoding information; instead, she sends an 'ack' message (CLUE ACK
   2).

   Both sides have now sent their CLUE 'advertisement' messages, and an
   SDP exchange is required to negotiate Encodings.  For simplicity, in
   this case, Alice is shown sending an INVITE with a new offer; in many
   implementations, both sides might send an INVITE, which would be
   resolved by use of the 491 Request Pending resolution mechanism from
   [RFC 3261].

   Alice now sends SIP INVITE 2.  She maintains the sendrecv audio,
   video, and CLUE "m=" lines, and she adds three new sendonly "m="
   lines to represent the three CLUE-controlled Encodings she can send.
   Each of these "m=" lines has a label corresponding to one of the
   Encoding IDs from CLUE ADVERTISEMENT 1.  Each also has its mid added
   to the grouping attribute to show they are controlled by the CLUE
   data channel.  A snippet of the SDP showing the grouping attribute,
   data channel, and video "m=" lines are shown below:

      ...
      a=group:CLUE 3 4 5 6
      ...
      m=video 6002 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=sendrecv
      a=mid:2
      ...
      m=application 6100 UDP/DTLS/SCTP webrtc-datachannel
      a=sctp-port: 5000
      a=dcmap:2 subprotocol="CLUE";ordered=true
      a=mid:3
      ...
      m=video 6004 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016
      a=sendonly
      a=mid:4
      a=label:enc1
      m=video 6006 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016
      a=sendonly
      a=mid:5
      a=label:enc2
      m=video 6008 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016
      a=sendonly
      a=mid:6
      a=label:enc3

   Bob now has all the information he needs to decide which streams to
   configure, allowing him to send both a CLUE 'configure' message and
   his SDP Answer.  As such, he now sends CLUE CONFIGURE 1.  This
   requests the pair of switched Captures that represent Alice's scene,
   and he configures them with encoder ids "enc1" and "enc2".

   Bob also sends his SDP Answer as part of SIP 200 OK 2.  Alongside his
   original audio, video, and CLUE "m=" lines, he includes three
   additional "m=" lines corresponding to the three added by Alice: two
   active recvonly "m= "lines and an inactive "m=" line for the third.
   He adds their "mid" values to the grouping attribute to show they are
   controlled by the CLUE data channel.  A snippet of the SDP showing
   the grouping attribute and the video "m=" lines are shown below (mid
   100 represents the CLUE data channel, which is not shown):

      ...
      a=group:CLUE 11 12 13 100
      ...
      m=video 58722 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=sendrecv
      a=mid:10
      ...
      m=video 58724 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=recvonly
      a=mid:11
      m=video 58726 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=recvonly
      a=mid:12
      m=video 58728 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=inactive
      a=mid:13

   Alice receives Bob's CLUE CONFIGURE 1 message and sends CLUE
   CONFIGURE RESPONSE 1 to acknowledge its reception.  She does not yet
   send the Capture Encodings specified, because at this stage, she
   hasn't processed Bob's answer SDP and thus hasn't negotiated the
   ability for Bob to receive these streams.

   On receiving SIP 200 OK 2 from Bob, Alice sends her SIP ACK (SIP ACK
   2).  She is now able to send the two streams of video Bob requested
   -- this is illustrated as MEDIA 2.

   The constraints of offer/answer meant that Bob could not include his
   Encoding information as new "m=" lines in SIP 200 OK 2.  As such, Bob
   now sends SIP INVITE 3 to generate a new offer.  Along with all the
   streams from SIP 200 OK 2, Bob also includes two new sendonly
   streams.  Each stream has a label corresponding to the Encoding IDs
   in his CLUE ADVERTISEMENT 2 message.  He also adds their "mid" values
   to the grouping attribute to show they are controlled by the CLUE
   data channel.  A snippet of the SDP showing the grouping attribute
   and the video "m=" lines are shown below (mid 100 represents the CLUE
   data channel, which is not shown):

      ...
      a=group:CLUE 11 12 14 15 100
      ...
      m=video 58722 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=sendrecv
      a=mid:10
      ...
      m=video 58724 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=recvonly
      a=mid:11
      m=video 58726 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=recvonly
      a=mid:12
      m=video 0 RTP/AVP 96
      a=mid:13
      m=video 58728 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016
      a=sendonly
      a=label:foo
      a=mid:14
      m=video 58730 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016
      a=sendonly
      a=label:bar
      a=mid:15

   Having received this, Alice now has all the information she needs to
   send her CLUE 'configure' message and her SDP Answer.  In CLUE
   CONFIGURE 2, she requests the two static Captures from Bob to be sent
   on Encodings "foo" and "bar".

   Alice also sends SIP 200 OK 3, matching two recvonly "m=" lines to
   Bob's new sendonly lines.  She includes their "mid" values in the
   grouping attribute to show they are controlled by the CLUE data
   channel.  Alice then deactivates the initial non-CLUE-controlled
   media, as bidirectional CLUE-controlled media is now available.  A
   snippet of the SDP showing the grouping attribute and the video "m="
   lines are shown below (mid 3 represents the data channel, not shown):

      ...
      a=group:CLUE 3 4 5 7 8
      ...
      m=video 0 RTP/AVP 96
      a=mid:2
      ...
      m=video 6004 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016
      a=sendonly
      a=mid:4
      a=label:enc1
      m=video 6006 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016
      a=sendonly
      a=mid:5
      a=label:enc2
      m=video 0 RTP/AVP 96
      a=mid:6
      m=video 6010 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=recvonly
      a=mid:7
      m=video 6012 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=recvonly
      a=mid:8

   Bob receives Alice's CLUE CONFIGURE 2 message and sends CLUE
   CONFIGURE RESPONSE 2 to acknowledge its reception.  Bob does not yet
   send the Capture Encodings specified, because he hasn't yet received
   and processed Alice's SDP Answer and negotiated the ability to send
   these streams.

   Finally, on receiving SIP 200 OK 3, Bob is now able to send the two
   streams of video Alice requested -- this is illustrated as MEDIA 3.

   Both sides of the call are now sending multiple video streams with
   their sources defined via CLUE negotiation.  As the call progresses,
   either side can send a new 'advertisement' or 'configure' message or
   the new SDP Offers/Answers to add, remove, or change what they have
   available or want to receive.

9.  Example: A Call between a CLUE-Capable and Non-CLUE Endpoint

   In this brief example, Alice is a CLUE-capable Endpoint making a call
   to Bob, who is not CLUE capable (i.e., is not able to use the CLUE
   protocol).

         +----------+                      +-----------+
         |  Alice   |                      |    Bob    |
         |          |                      |           |
         +----+-----+                      +-----+-----+
              |                                  |
              |                                  |
              | SIP INVITE 1                     |
              |--------------------------------->|
              |                                  |
              |                                  |
              |                         200 0K 1 |
              |<---------------------------------|
              |                                  |
              |                                  |
              | SIP ACK 1                        |
              |--------------------------------->|
              |                                  |
              |                                  |
              |                                  |
              |<########### MEDIA 1 ############>|
              |   1 video A->B, 1 video B->A     |
              |<################################>|
              |                                  |
              |                                  |
              |                                  |
              |                                  |
              v                                  v

   In SIP INVITE 1, Alice sends Bob a SIP INVITE including the basic
   audio and video capabilities and data channel in the SDP body as per
   [RFC 8841].  Alice also includes the "sip.clue" media feature tag in
   the INVITE.  A snippet of the SDP showing the grouping attribute and
   the video "m=" line are shown below.  Alice has included a "CLUE"
   group and the mid corresponding to a data channel in the group (3).
   Note that Alice has chosen not to include any CLUE-controlled media
   in the initial offer -- the "mid" value of the video line is not
   included in the "CLUE" group.

      ...
      a=group:CLUE 3
      ...
      m=video 6002 RTP/AVP 96
      a=rtpmap:96 H264/90000
      a=fmtp:96 profile-level-id=42e016;max-mbps=108000;max-fs=3600
      a=sendrecv
      a=mid:2
      ...
      m=application 6100 UDP/DTLS/SCTP webrtc-datachannel
      a=sctp-port: 5000
      a=dcmap:2 subprotocol="CLUE";ordered=true
      a=mid:3

   Bob is not CLUE capable and hence does not recognize the "CLUE"
   semantic for the grouping attribute, nor does he support the data
   channel.  IN SIP 200 OK 1, he responds with an answer that includes
   audio and video, but with the data channel zeroed.

   From the lack of a CLUE group, Alice understands that Bob does not
   support CLUE, or does not wish to use it.  Both sides are now able to
   send a single audio and video stream to each other.  At this point,
   Alice begins to send her fallback video: in this case, it's likely a
   switched view from whichever camera shows the current loudest
   participant on her side.

10.  IANA Considerations

10.1.  New SDP Grouping Framework Attribute

   This document registers the following semantics with IANA in the
   "Semantics for the 'group' SDP Attribute" subregistry (under the
   "Session Description Protocol (SDP) Parameters" registry) per
   [RFC 5888]:

   +===========================+=======+==============+===========+
   |         Semantics         | Token | Mux Category | Reference |
   +===========================+=======+==============+===========+
   | CLUE-controlled "m=" line | CLUE  | NORMAL       | RFC 8848  |
   +---------------------------+-------+--------------+-----------+

                               Table 1

10.2.  New SIP Media Feature Tag

   This specification registers a new media feature tag in the SIP
   [RFC 3261] tree per the procedures defined in [RFC 2506] and [RFC 3840].

   Media feature tag name:  sip.clue

   ASN.1 Identifier:  30

   Summary of the media feature indicated by this tag:  This feature tag
      indicates that the device supports CLUE-controlled media.

   Values appropriate for use with this feature tag:  Boolean.

   The feature tag is intended primarily for use in the following
   applications, protocols, services, or negotiation mechanisms:
      This feature tag is most useful in a communications application
      for describing the capabilities of a device to use the CLUE
      control protocol to negotiate the use of multiple media streams.

   Related standards or documents:  RFC 8848

   Security Considerations:  Security considerations for this media
      feature tag are discussed in Section 11 of RFC 8848.

   Name(s) & email address(es) of person(s) to contact for further
   information:  Internet Engineering Steering Group <iesg@ietf.org>

   Intended usage:  COMMON

11.  Security Considerations

   CLUE makes use of a number of protocols and mechanisms, either
   defined by CLUE or long-standing.  The Security Considerations
   section of the CLUE Framework document [RFC 8845] addresses the need
   to secure these mechanisms by following the recommendations of the
   individual protocols.

   Beyond the need to secure the constituent protocols, the use of CLUE
   does impose additional security concerns.  One area of increased risk
   involves the potential for a malicious party to subvert a CLUE-
   capable device to attack a third party by driving large volumes of
   media (particularly video) traffic at them by establishing a
   connection to the CLUE-capable device and directing the media to the
   victim.  While this is a risk for all media devices, a CLUE-capable
   device may allow the attacker to configure multiple media streams to
   be sent, significantly increasing the volume of traffic directed at
   the victim.

   This attack can be prevented by ensuring that the media recipient
   intends to receive the media packets.  As such, all CLUE-capable
   devices MUST support key negotiation and receiver intent assurance
   via DTLS / Secure Real-time Transport Protocol (SRTP) [RFC 5763] on
   CLUE-controlled RTP "m=" lines, and they MUST use it or some other
   mechanism that provides receiver intent assurance.  All CLUE-
   controlled RTP "m" lines must be secured and implemented using
   mechanisms such as SRTP [RFC 3711].  CLUE implementations MAY choose
   not to require the use of SRTP to secure legacy (non-CLUE-controlled)
   media for backwards compatibility with older SIP clients that are
   incapable of supporting it.

   CLUE also defines a new media feature tag that indicates CLUE
   support.  This tag may be present even in non-CLUE calls, which
   increases the metadata available about the sending device; this can
   help an attacker differentiate between multiple devices and identify
   otherwise anonymized users via the fingerprint of features their
   device supports.  To prevent this, SIP signaling used to set up CLUE
   sessions SHOULD always be encrypted using TLS [RFC 5630].

   The CLUE protocol also carries additional information that could be
   used to help fingerprint a particular user or to identify the
   specific version of software being used.  The CLUE Framework
   [RFC 8847] provides details about these issues and how to mitigate
   them.

12.  References

12.1.  Normative References

   [RFC 2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC 2119, March 1997,
              <https://www.rfc-editor.org/info/RFC 2119>.

   [RFC 3711]  Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
              Norrman, "The Secure Real-time Transport Protocol (SRTP)",
              RFC 3711, DOI 10.17487/RFC 3711, March 2004,
              <https://www.rfc-editor.org/info/RFC 3711>.

   [RFC 3840]  Rosenberg, J., Schulzrinne, H., and P. Kyzivat,
              "Indicating User Agent Capabilities in the Session
              Initiation Protocol (SIP)", RFC 3840,
              DOI 10.17487/RFC 3840, August 2004,
              <https://www.rfc-editor.org/info/RFC 3840>.

   [RFC 4574]  Levin, O. and G. Camarillo, "The Session Description
              Protocol (SDP) Label Attribute", RFC 4574,
              DOI 10.17487/RFC 4574, August 2006,
              <https://www.rfc-editor.org/info/RFC 4574>.

   [RFC 5763]  Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
              for Establishing a Secure Real-time Transport Protocol
              (SRTP) Security Context Using Datagram Transport Layer
              Security (DTLS)", RFC 5763, DOI 10.17487/RFC 5763, May
              2010, <https://www.rfc-editor.org/info/RFC 5763>.

   [RFC 5888]  Camarillo, G. and H. Schulzrinne, "The Session Description
              Protocol (SDP) Grouping Framework", RFC 5888,
              DOI 10.17487/RFC 5888, June 2010,
              <https://www.rfc-editor.org/info/RFC 5888>.

   [RFC 8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC 8174,
              May 2017, <https://www.rfc-editor.org/info/RFC 8174>.

   [RFC 8831]  Jesup, R., Loreto, S., and M. Tüxen, "WebRTC Data
              Channels", RFC 8831, DOI 10.17487/RFC 8831, January 2021,
              <https://www.rfc-editor.org/info/RFC 8831>.

   [RFC 8841]  Holmberg, C., Shpount, R., Loreto, S., and G. Camarillo,
              "Session Description Protocol (SDP) Offer/Answer
              Procedures for Stream Control Transmission Protocol (SCTP)
              over Datagram Transport Layer Security (DTLS) Transport",
              RFC 8841, DOI 10.17487/RFC 8841, January 2021,
              <https://www.rfc-editor.org/info/RFC 8841>.

   [RFC 8843]  Holmberg, C., Alvestrand, H., and C. Jennings,
              "Negotiating Media Multiplexing Using the Session
              Description Protocol (SDP)", RFC 8843,
              DOI 10.17487/RFC 8843, January 2021,
              <https://www.rfc-editor.org/info/RFC 8843>.

   [RFC 8845]  Duckworth, M., Ed., Pepperell, A., and S. Wenger,
              "Framework for Telepresence Multi-Streams", RFC 8845,
              DOI 10.17487/RFC 8845, January 2021,
              <https://www.rfc-editor.org/info/RFC 8845>.

   [RFC 8846]  Presta, R. and S P. Romano, "An XML Schema for the
              Controlling Multiple Streams for Telepresence (CLUE) Data
              Model", RFC 8846, DOI 10.17487/RFC 8846, January 2021,
              <http://www.rfc-editor.org/info/RFC 8846>.

   [RFC 8847]  Presta, R. and S P. Romano, "Protocol for Controlling
              Multiple Streams for Telepresence (CLUE)", RFC 8847,
              DOI 10.17487/RFC 8847, January 2021,
              <https://www.rfc-editor.org/info/RFC 8847>.

   [RFC 8849]  Even, R. and J. Lennox, "Mapping RTP Streams to
              Controlling Multiple Streams for Telepresence (CLUE) Media
              Captures", RFC 8849, DOI 10.17487/RFC 8849, January 2021,
              <https://www.rfc-editor.org/info/RFC 8849>.

   [RFC 8850]  Holmberg, C., "Controlling Multiple Streams for
              Telepresence (CLUE) Protocol Data Channel", RFC 8850,
              DOI 10.17487/RFC 8850, January 2021,
              <https://www.rfc-editor.org/info/RFC 8850>.

   [RFC 8864]  Drage, K., Makaraju, M., Ejzak, R., Marcon, J., and R.
              Even, Ed., "Negotiation Data Channels Using the Session
              Description Protocol (SDP)", RFC 8864,
              DOI 10.17487/RFC 8864, January 2021,
              <https://www.rfc-editor.org/info/RFC 8864>.

12.2.  Informative References

   [RFC 2506]  Holtman, K., Mutz, A., and T. Hardie, "Media Feature Tag
              Registration Procedure", BCP 31, RFC 2506,
              DOI 10.17487/RFC 2506, March 1999,
              <https://www.rfc-editor.org/info/RFC 2506>.

   [RFC 3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              DOI 10.17487/RFC 3261, June 2002,
              <https://www.rfc-editor.org/info/RFC 3261>.

   [RFC 3264]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
              with Session Description Protocol (SDP)", RFC 3264,
              DOI 10.17487/RFC 3264, June 2002,
              <https://www.rfc-editor.org/info/RFC 3264>.

   [RFC 3311]  Rosenberg, J., "The Session Initiation Protocol (SIP)
              UPDATE Method", RFC 3311, DOI 10.17487/RFC 3311, October
              2002, <https://www.rfc-editor.org/info/RFC 3311>.

   [RFC 4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
              Description Protocol", RFC 4566, DOI 10.17487/RFC 4566,
              July 2006, <https://www.rfc-editor.org/info/RFC 4566>.

   [RFC 5630]  Audet, F., "The Use of the SIPS URI Scheme in the Session
              Initiation Protocol (SIP)", RFC 5630,
              DOI 10.17487/RFC 5630, October 2009,
              <https://www.rfc-editor.org/info/RFC 5630>.

   [RFC 5761]  Perkins, C. and M. Westerlund, "Multiplexing RTP Data and
              Control Packets on a Single Port", RFC 5761,
              DOI 10.17487/RFC 5761, April 2010,
              <https://www.rfc-editor.org/info/RFC 5761>.

   [RFC 6184]  Wang, Y.-K., Even, R., Kristensen, T., and R. Jesup, "RTP
              Payload Format for H.264 Video", RFC 6184,
              DOI 10.17487/RFC 6184, May 2011,
              <https://www.rfc-editor.org/info/RFC 6184>.

   [RFC 8445]  Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
              Connectivity Establishment (ICE): A Protocol for Network
              Address Translator (NAT) Traversal", RFC 8445,
              DOI 10.17487/RFC 8445, July 2018,
              <https://www.rfc-editor.org/info/RFC 8445>.

Acknowledgements

   Besides the authors, the team focusing on this document consists of:
   Roni Even, Simon Pietro Romano, and Roberta Presta.

   Christian Groves, Jonathan Lennox, and Adam Roach have contributed
   detailed comments and suggestions.

Authors' Addresses

   Robert Hanton
   Cisco Systems

   Email: rohanse2@cisco.com


   Paul Kyzivat

   Email: pkyzivat@alum.mit.edu


   Lennard Xiao
   Beijing Chuangshiyoulian

   Email: lennard.xiao@outlook.com


   Christian Groves

   Email: cngroves.std@gmail.com



RFC TOTAL SIZE: 70236 bytes
PUBLICATION DATE: Monday, January 18th, 2021
LEGAL RIGHTS: The IETF Trust (see BCP 78)      


RFC-ARCHIVE.ORG

© RFC 8848: The IETF Trust, Monday, January 18th, 2021
© the RFC Archive, 2024, RFC-Archive.org
Maintainer: J. Tunnissen

Privacy Statement