The RFC Archive
 The RFC Archive   RFC 8532   « Jump to any RFC number directly 
 RFC Home
Full RFC Index
Recent RFCs
RFC Standards
Best Current Practice
RFC Errata
1 April RFC



IETF RFC 8532



Last modified on Wednesday, April 17th, 2019

Permanent link to RFC 8532
Search GitHub Wiki for RFC 8532
Show other RFCs mentioning RFC 8532







Internet Engineering Task Force (IETF)                          D. Kumar
Request for Comments: 8532                                         Cisco
Category: Standards Track                                      M. Wang
ISSN: 2070-1721                                               Q. Wu, Ed.
                                                                  Huawei
                                                               R. Rahman
                                                             S. Raghavan
                                                                   Cisco
                                                              April 2019


             Generic YANG Data Model for the Management of
      Operations, Administration, and Maintenance (OAM) Protocols
                 That Use Connectionless Communications

 Abstract

   This document presents a base YANG Data model for the management of
   Operations, Administration, and Maintenance (OAM) protocols that use
   connectionless communications.  The data model is defined using the
   YANG data modeling language, as specified in RFC 7950.  It provides a
   technology-independent abstraction of key OAM constructs for OAM
   protocols that use connectionless communication.  The base model
   presented here can be extended to include technology-specific
   details.

   There are two key benefits of this approach: First, it leads to
   uniformity between OAM protocols.  Second, it supports both nested
   OAM workflows (i.e., performing OAM functions at the same level or
   different levels through a unified interface) as well as interactive
   OAM workflows (i.e., performing OAM functions at the same level
   through a unified interface).

 Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/RFC 8532.





Kumar, et al.                Standards Track                 PAGE 1 top


RFC 8532 Connectionless OAM YANG Data Model April 2019 Copyright Notice Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Conventions Used in This Document . . . . . . . . . . . . . . 4 2.1. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 4 2.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 5 2.3. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 5 3. Overview of the Connectionless OAM Model . . . . . . . . . . 5 3.1. TP Address . . . . . . . . . . . . . . . . . . . . . . . 6 3.2. Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3. OAM Neighboring Test Points . . . . . . . . . . . . . . . 7 3.4. Test Point Location Information . . . . . . . . . . . . . 8 3.5. Test Point Locations . . . . . . . . . . . . . . . . . . 8 3.6. Path Discovery Data . . . . . . . . . . . . . . . . . . . 8 3.7. Continuity Check Data . . . . . . . . . . . . . . . . . . 9 3.8. OAM Data Hierarchy . . . . . . . . . . . . . . . . . . . 9 4. LIME Time Types YANG Module . . . . . . . . . . . . . . . . . 12 5. Connectionless OAM YANG Module . . . . . . . . . . . . . . . 15 6. Connectionless Model Applicability . . . . . . . . . . . . . 44 6.1. BFD Extension . . . . . . . . . . . . . . . . . . . . . . 45 6.1.1. Augment Method . . . . . . . . . . . . . . . . . . . 45 6.1.2. Schema Mount . . . . . . . . . . . . . . . . . . . . 47 6.2. LSP Ping Extension . . . . . . . . . . . . . . . . . . . 49 6.2.1. Augment Method . . . . . . . . . . . . . . . . . . . 49 6.2.2. Schema Mount . . . . . . . . . . . . . . . . . . . . 50 7. Security Considerations . . . . . . . . . . . . . . . . . . . 52 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 54 9. References . . . . . . . . . . . . . . . . . . . . . . . . . 54 9.1. Normative References . . . . . . . . . . . . . . . . . . 54 9.2. Informative References . . . . . . . . . . . . . . . . . 56 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 58 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 59 Kumar, et al. Standards Track PAGE 2 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 1. Introduction Operations, Administration, and Maintenance (OAM) are important networking functions that allow operators to: 1. monitor network communications (i.e., reachability verification and Continuity Check) 2. troubleshoot failures (i.e., fault verification and localization) 3. monitor service-level agreements and performance (i.e., performance management) An overview of OAM tools is presented in [RFC 7276]. Ping and Traceroute (see [RFC 792] and [RFC 4443]) are respectively well-known fault verification and isolation tools for IP networks. Over the years, different technologies have developed similar toolsets for equivalent purposes. The different sets of OAM tools may support both connection-oriented or connectionless technologies. In connection-oriented technologies, a connection is established prior to the transmission of data. After the connection is established, no additional control information such as signaling or operations and maintenance information is required to transmit the actual user data. In connectionless technologies, data is typically sent between communicating endpoints without prior arrangement, but control information is required to identify the destination (e.g., [G.800] and [RFC 7276]). The YANG data model for OAM protocols using connection-oriented communications is specified in [RFC 8531]. This document defines a base YANG data model for OAM protocols that use connectionless communications. The data model is defined using the YANG data modeling language [RFC 7950]. This generic YANG data model for connectionless OAM includes only configuration and state data. It can be used in conjunction with the data retrieval method model described in [RFC 8533], which focuses on the data retrieval procedures such as RPC, or it can be used independently of this data retrieval method model. Kumar, et al. Standards Track PAGE 3 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 2. Conventions Used in This Document The following terms are defined in [RFC 6241] and are used in this specification: o client o configuration data o server o state data The following terms are defined in [RFC 7950] and are used in this specification: o augment o data model o data node The terminology for describing YANG data models is found in [RFC 7950]. 2.1. Abbreviations BFD - Bidirectional Forwarding Detection [RFC 5880]. RPC - Remote Procedure Call [RFC 1831]. DSCP - Differentiated Services Code Point. VRF - Virtual Routing and Forwarding [RFC 4382]. OWAMP - One-Way Active Measurement Protocol [RFC 4656]. TWAMP - Two-Way Active Measurement Protocol [RFC 5357]. AS - Autonomous System. LSP - Label Switched Path. TE - Traffic Engineering. MPLS - Multiprotocol Label Switching. NI - Network Instance. Kumar, et al. Standards Track PAGE 4 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 PTP - Precision Time Protocol [IEEE.1588v2]. NTP - Network Time Protocol [RFC 5905]. 2.2. Terminology MAC - Media Access Control. MAC address - Address for the data-link layer interface. TP - Test Point. The TP is a functional entity that is defined at a node in the network and can initiate and/or react to OAM diagnostic tests. This document focuses on the data-plane functionality of TPs. RPC operation - A specific Remote Procedure Call. CC - A Continuity Check [RFC 7276] is used to verify that a destination is reachable and therefore also referred to as reachability verification. 2.3. Tree Diagrams Tree diagrams used in this document follow the notation defined in [RFC 8340]. 3. Overview of the Connectionless OAM Model The YANG data model for OAM protocols that use connectionless communications has been split into two modules: o The "ietf-lime-time-types" module provides common definitions such as Time-related data types and Timestamp-related data types. o The "ietf-connectionless-oam" module defines technology- independent abstraction of key OAM constructs for OAM protocols that use connectionless communication. The "ietf-connectionless-oam" module augments the "/networks/network/ node" path defined in the "ietf-network" module [RFC 8345] with the 'test-point-locations' grouping defined in Section 3.5. The network nodes in the "/networks/network/node" path are used to describe the network hierarchies and the inventory of nodes contained in a network. Under the 'test-point-locations' grouping, each test point location is chosen based on the 'tp-location-type' leaf, which, when chosen, leads to a container that includes a list of 'test-point-locations'. Kumar, et al. Standards Track PAGE 5 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 Each 'test-point-locations' list includes a 'test-point-location- info' grouping. The 'test-point-location-info' grouping includes: o 'tp-technology' grouping, o 'tp-tools' grouping, and o 'connectionless-oam-tps' grouping. The groupings of 'tp-address' and 'tp-address-ni' are kept out of the 'test-point-location-info' grouping to make it addressing agnostic and allow varied composition. Depending upon the choice of the 'tp-location-type' (determined by the 'tp-address-ni'), each container differs in its composition of 'test-point-locations', while the 'test-point-location-info' is a common aspect of every 'test-point-locations'. The 'tp-address-ni' grouping is used to describe the corresponding network instance. The 'tp-technology' grouping indicates OAM technology details. The 'connectionless-oam-tps' grouping is used to describe the relationship of one test point with other test points. The 'tp-tools' grouping describes the OAM tools supported. In addition, at the top of the model, there is an 'cc-oper-data' container for session statistics. A grouping is also defined for common session statistics, and these are only applicable for proactive OAM sessions (see Section 3.2). 3.1. TP Address With connectionless OAM protocols, the TP address can be one of the following types: o MAC address [RFC 6136] at the data-link layer for TPs o IPv4 or IPv6 address at the IP layer for TPs o TP-attribute identifying a TP associated with an application-layer function o Router-id to represent the device or node, which is commonly used to identify nodes in routing and other control-plane protocols [RFC 8294]. To define a forwarding treatment of a test packet, the 'tp-address' grouping needs to be associated with additional parameters, e.g., DSCP for IP or Traffic Class [RFC 5462] for MPLS. In the generic Kumar, et al. Standards Track PAGE 6 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 connectionless OAM YANG data model, these parameters are not explicitly configured. The model user can add corresponding parameters according to their requirements. 3.2. Tools The different OAM tools may be used in one of two basic types of activation: proactive and on-demand. Proactive OAM refers to OAM actions that are carried out continuously to permit proactive reporting of faults. The proactive OAM method requires persistent configuration. On-demand OAM refers to OAM actions that are initiated via manual intervention for a limited time to carry out specific diagnostics. The on-demand OAM method requires only transient configuration (e.g., [RFC 7276] and [G.8013]). In connectionless OAM, the 'session-type' grouping is defined to indicate which kind of activation will be used by the current session. In connectionless OAM, the tools attribute is used to describe a toolset for fault detection and isolation. In addition, it can serve as a constraint condition when the base model is extended to a specific OAM technology. For example, to fulfill the ICMP PING configuration, the "../coam:continuity-check" leaf should be set to "true", and then the LIME base model should be augmented with details specific to ICMP PING. 3.3. OAM Neighboring Test Points Given that typical network communication stacks have a multi-layer architecture, the set of associated OAM protocols has also a multi- layer structure; each communication layer in the stack may have its own OAM protocol [RFC 7276] that may also be linked to a specific administrative domain. Management of these OAM protocols will necessitate associated test points in the nodes accessible by appropriate management domains. Accordingly, a given network interface may actually present several test points. Each OAM test point may have an associated list of neighboring test points that are in other layers up and down the protocol stack for the same interface and are therefore related to the current test point. This allows users to easily navigate between related neighboring layers to efficiently troubleshoot a defect. In this model, the 'position' leaf defines the relative position of the neighboring test point corresponding to the current test point, and it is provided to allow correlation of faults at different locations. If there is one neighboring test point placed before the current test point, the 'position' leaf is set to -1. If there is one neighboring Kumar, et al. Standards Track PAGE 7 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 test point placed after the current test point, the 'position' leaf is set to 1. If there is no neighboring test point placed before or after the current test point, the 'position' leaf is set to 0. +-- oam-neighboring-tps* [index] +-- index? uint16 +-- position? int8 +-- (tp-location)? +--:(mac-address) | +-- mac-address-location? yang:mac-address +--:(ipv4-address) | +-- ipv4-address-location? inet:ipv4-address +--:(ipv6-address) | +-- ipv6-address-location? inet:ipv6-address +--:(as-number) | +-- as-number-location? inet:as-number +--:(router-id) +-- router-id-location? rt:router-id 3.4. Test Point Location Information This is a generic grouping for Test Point Location Information (i.e., 'test-point-location-info' grouping). It provides details of Test Point Location using the 'tp-technology', 'tp-tools', and 'oam-neighboring-tps' groupings, all of which are defined above. 3.5. Test Point Locations This is a generic grouping for Test Point Locations. 'tp-location- type' leaf is used to define location types -- for example, 'ipv4-location-type', 'ipv6-location-type', etc. Container is defined under each location type containing a list keyed to a test point address, Test Point Location Information defined in the section above, and network instance name (e.g., VRF instance name) if required. 3.6. Path Discovery Data This is a generic grouping for the path discovery data model that can be retrieved by any data retrieval method, including RPC operations. Path discovery data output from methods, includes 'src-test-point' container, 'dst-test-point' container, 'sequence-number' leaf, 'hop-cnt' leaf, session statistics of various kinds, and information related to path verification and path trace. Path discovery includes data to be retrieved on a 'per-hop' basis via a list of 'path-trace- info-list' items which includes information such as 'timestamp' grouping, 'ingress-intf-name', 'egress-intf-name', and 'app-meta- data'. The path discovery data model is made generic enough to allow Kumar, et al. Standards Track PAGE 8 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 different methods of data retrieval. None of the fields are made mandatory for that reason. Note that a set of retrieval methods are defined in [RFC 8533]. 3.7. Continuity Check Data This is a generic grouping for the Continuity Check data model that can be retrieved by any data retrieval methods including RPC operations. Continuity Check data output from methods, includes 'src-test-point' container, 'dst-test-point' container, 'sequence-number' leaf, 'hop-cnt' leaf, and session statistics of various kinds. The Continuity Check data model is made generic enough to allow different methods of data retrieval. None of the fields are made mandatory for that reason. Noted that a set of retrieval methods are defined in [RFC 8533]. 3.8. OAM Data Hierarchy The complete data hierarchy related to the OAM YANG data model is presented below. module: ietf-connectionless-oam +--ro cc-session-statistics-data {continuity-check}? +--ro cc-session-statistics* [type] +--ro type identityref +--ro cc-ipv4-sessions-statistics | +--ro cc-session-statistics | +--ro session-count? uint32 | +--ro session-up-count? uint32 | +--ro session-down-count? uint32 | +--ro session-admin-down-count? uint32 +--ro cc-ipv6-sessions-statistics +--ro cc-session-statistics +--ro session-count? uint32 +--ro session-up-count? uint32 +--ro session-down-count? uint32 +--ro session-admin-down-count? uint32 augment /nd:networks/nd:network/nd:node: +--rw tp-location-type? identityref +--rw ipv4-location-type | +--rw test-point-ipv4-location-list | +--rw test-point-locations* [ipv4-location ni] | +--rw ipv4-location inet:ipv4-address | +--rw ni routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools Kumar, et al. Standards Track PAGE 9 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw ipv6-location-type | +--rw test-point-ipv6-location-list | +--rw test-point-locations* [ipv6-location ni] | +--rw ipv6-location inet:ipv6-address | +--rw ni routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw mac-location-type | +--rw test-point-mac-address-location-list | +--rw test-point-locations* [mac-address-location] | +--rw mac-address-location yang:mac-address | +--rw (technology)? Kumar, et al. Standards Track PAGE 10 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw group-as-number-location-type | +--rw test-point-as-number-location-list | +--rw test-point-locations* [as-number-location] | +--rw as-number-location inet:as-number | +--rw ni? routing-instance-ref | +--rw (technology)? | | +--:(technology-null) | | +--rw tech-null? empty | +--rw tp-tools | | +--rw continuity-check boolean | | +--rw path-discovery boolean | +--rw root? <anydata> | +--rw oam-neighboring-tps* [index] | +--rw index uint16 | +--rw position? int8 | +--rw (tp-location)? | +--:(mac-address) | | +--rw mac-address-location? yang:mac-address | +--:(ipv4-address) | | +--rw ipv4-address-location? inet:ipv4-address | +--:(ipv6-address) | | +--rw ipv6-address-location? inet:ipv6-address | +--:(as-number) | | +--rw as-number-location? inet:as-number | +--:(router-id) | +--rw router-id-location? rt:router-id +--rw group-router-id-location-type +--rw test-point-system-info-location-list Kumar, et al. Standards Track PAGE 11 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 +--rw test-point-locations* [router-id-location] +--rw router-id-location rt:router-id +--rw ni? routing-instance-ref +--rw (technology)? | +--:(technology-null) | +--rw tech-null? empty +--rw tp-tools | +--rw continuity-check boolean | +--rw path-discovery boolean +--rw root? <anydata> +--rw oam-neighboring-tps* [index] +--rw index uint16 +--rw position? int8 +--rw (tp-location)? +--:(mac-address) | +--rw mac-address-location? yang:mac-address +--:(ipv4-address) | +--rw ipv4-address-location? inet:ipv4-address +--:(ipv6-address) | +--rw ipv6-address-location? inet:ipv6-address +--:(as-number) | +--rw as-number-location? inet:as-number +--:(router-id) +--rw router-id-location? rt:router-id 4. LIME Time Types YANG Module <CODE BEGINS> file "ietf-lime-time-types@2019-04-16.yang" module ietf-lime-time-types { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-lime-time-types"; prefix lime; organization "IETF LIME Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/lime> WG List: <mailto:lmap@ietf.org> Editor: Qin Wu <bill.wu@huawei.com>"; description "This module provides time-related definitions used by the data models written for Layer Independent OAM Management in the Multi-Layer Environment (LIME). This module defines identities but no schema tree elements. Kumar, et al. Standards Track PAGE 12 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 8532; see the RFC itself for full legal notices."; revision 2019-04-16 { description "Initial version."; reference "RFC 8532: Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"; } /*** Collection of common types related to time ***/ /*** Time unit identity ***/ identity time-unit-type { description "Time unit type."; } identity hours { base time-unit-type; description "Time unit in hours."; } identity minutes { base time-unit-type; description "Time unit in minutes."; } identity seconds { base time-unit-type; description "Time unit in seconds."; } Kumar, et al. Standards Track PAGE 13 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 identity milliseconds { base time-unit-type; description "Time unit in milliseconds."; } identity microseconds { base time-unit-type; description "Time unit in microseconds."; } identity nanoseconds { base time-unit-type; description "Time unit in nanoseconds."; } /*** Timestamp format Identity ***/ identity timestamp-type { description "Base identity for Timestamp Type."; } identity truncated-ptp { base timestamp-type; description "Identity for 64-bit short-format PTP timestamp."; } identity truncated-ntp { base timestamp-type; description "Identity for 32-bit short-format NTP timestamp."; } identity ntp64 { base timestamp-type; description "Identity for 64-bit NTP timestamp."; } identity icmp { base timestamp-type; description "Identity for 32-bit ICMP timestamp."; } Kumar, et al. Standards Track PAGE 14 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 identity ptp80 { base timestamp-type; description "Identity for 80-bit PTP timestamp."; } } <CODE ENDS> 5. Connectionless OAM YANG Module This module imports the Core YANG Derived Types definition ("ietf- yang-types" module) and Internet-Specific Derived Types definitions ("ietf-inet-types" module) from [RFC 6991], the "ietf-routing-types" module from [RFC 8294], the "ietf-interfaces" module from [RFC 8343], the "ietf-network" module from [RFC 8345], the "ietf-network-instance" module from [RFC 8529], and the "ietf-lime-time-types" module in Section 4. This module references [IEEE.1588v1], [IEEE.1588v2], [RFC 8029], and additional RFCs cited elsewhere in this document. <CODE BEGINS> file "ietf-connectionless-oam@2019-04-16.yang" module ietf-connectionless-oam { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"; prefix cl-oam; import ietf-yang-schema-mount { prefix yangmnt; } import ietf-network { prefix nd; } import ietf-yang-types { prefix yang; } import ietf-interfaces { prefix if; } import ietf-inet-types { prefix inet; } import ietf-network-instance { prefix ni; } import ietf-routing-types { prefix rt; } Kumar, et al. Standards Track PAGE 15 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 import ietf-lime-time-types { prefix lime; } organization "IETF LIME Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/lime> WG List: <mailto:lmap@ietf.org> Deepak Kumar <dekumar@cisco.com> Qin Wu <bill.wu@huawei.com> Srihari Raghavan <srihari@cisco.com> Michael Wang <wangzitao@huawei.com> Reshad Rahman <rrahman@cisco.com>"; description "This YANG module defines the generic configuration, data model, and statistics for OAM protocols using connectionless communications, described in a protocol independent manner. It is assumed that each protocol maps corresponding abstracts to its native format. Each protocol may extend the YANG data model defined here to include protocol specific extensions. Copyright (c) 2019 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info). This version of this YANG module is part of RFC 8532; see the RFC itself for full legal notices."; revision 2019-04-16 { description "Base model for Connectionless Operations, Administration, and Maintenance (OAM)."; reference "RFC 8532: Generic YANG Data Model for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications"; } feature connectionless { Kumar, et al. Standards Track PAGE 16 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 description "This feature indicates that the OAM solution is connectionless."; } feature continuity-check { description "This feature indicates that the server supports executing a Continuity Check OAM command and returning a response. Servers that do not advertise this feature will not support executing Continuity Check commands or the RPC operation model for Continuity Check commands."; } feature path-discovery { description "This feature indicates that the server supports executing a path discovery OAM command and returning a response. Servers that do not advertise this feature will not support executing path discovery commands or the RPC operation model for path discovery commands."; } feature ptp-long-format { description "This feature indicates that the timestamp is PTP long format."; } feature ntp-short-format { description "This feature indicates that the timestamp is NTP short format."; } feature icmp-timestamp { description "This feature indicates that the timestamp is ICMP timestamp."; } identity traffic-type { description "This is the base identity of the traffic type, which includes IPv4, IPv6, etc."; } identity ipv4 { base traffic-type; description Kumar, et al. Standards Track PAGE 17 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 "identity for IPv4 traffic type."; } identity ipv6 { base traffic-type; description "identity for IPv6 traffic type."; } identity address-attribute-types { description "This is the base identity of the address attribute types, which are Generic IPv4/IPv6 Prefix, BGP Labeled IPv4/IPv6 Prefix, Tunnel ID, PW ID, VPLS VE ID, etc. (See RFC 8029 for details.)"; } typedef address-attribute-type { type identityref { base address-attribute-types; } description "Target address attribute type."; } typedef percentage { type decimal64 { fraction-digits 5; range "0..100"; } description "Percentage."; } typedef routing-instance-ref { type leafref { path "/ni:network-instances/ni:network-instance/ni:name"; } description "This type is used for leafs that reference a routing instance configuration."; } grouping cc-session-statistics { description "Grouping for session statistics."; container cc-session-statistics { description "CC session counters."; Kumar, et al. Standards Track PAGE 18 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 leaf session-count { type uint32; default "0"; description "Number of Continuity Check sessions. A value of zero indicates that no session count is sent."; } leaf session-up-count { type uint32; default "0"; description "Number of sessions that are up. A value of zero indicates that no up session count is sent."; } leaf session-down-count { type uint32; default "0"; description "Number of sessions that are down. A value of zero indicates that no down session count is sent."; } leaf session-admin-down-count { type uint32; default "0"; description "Number of sessions that are admin-down. A value of zero indicates that no admin- down session count is sent."; } } } grouping session-packet-statistics { description "Grouping for statistics per session packet."; container session-packet-statistics { description "Statistics per session packet."; leaf rx-packet-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received OAM packets. Kumar, et al. Standards Track PAGE 19 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf tx-packet-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of transmitted OAM packets. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf rx-bad-packet { type uint32 { range "0..4294967295"; } default "0"; description "Total number of received bad OAM packets. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf tx-packet-failed { type uint32 { range "0..4294967295"; } default "0"; description "Total number of OAM packets that failed when sent. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } } Kumar, et al. Standards Track PAGE 20 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 grouping cc-per-session-statistics { description "Grouping for per-session statistics."; container cc-per-session-statistics { description "Per-session statistics."; leaf create-time { type yang:date-and-time; description "Time and date when session is created."; } leaf last-down-time { type yang:date-and-time; description "Time and date of the last time session was down."; } leaf last-up-time { type yang:date-and-time; description "Time and date of the last time session was up."; } leaf down-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of Continuity Check sessions down. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf admin-down-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of Continuity Check sessions admin down. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } uses session-packet-statistics; Kumar, et al. Standards Track PAGE 21 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 } } grouping session-error-statistics { description "Grouping for per-session error statistics."; container session-error-statistics { description "Per-session error statistics."; leaf packet-loss-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received packet drops. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf loss-ratio { type percentage; description "Loss ratio of the packets. Expressed as percentage of packets lost with respect to packets sent."; } leaf packet-reorder-count { type uint32 { range "0..4294967295"; } default "0"; description "Total count of received packets that were reordered. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf packets-out-of-seq-count { type uint32 { range "0..4294967295"; } description "Total count of packets received out of sequence. The value of count will be set to zero (0) Kumar, et al. Standards Track PAGE 22 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf packets-dup-count { type uint32 { range "0..4294967295"; } description "Total count of received packet duplicates. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } } grouping session-delay-statistics { description "Grouping for delay statistics per session."; container session-delay-statistics { description "Session delay summarized information. By default, a one-way measurement protocol (e.g., OWAMP) is used to measure delay. When a two-way measurement protocol (e.g., TWAMP) is used instead, it can be indicated using the protocol-id defined in RPC operation of retrieval methods for connectionless OAM (RFC 8533), i.e., set protocol-id as OWAMP. Note that only one measurement protocol for delay is specified for interoperability reasons."; leaf time-unit-value { type identityref { base lime:time-unit-type; } default "lime:milliseconds"; description "Time units, where the options are s, ms, ns, etc."; } leaf min-delay-value { type uint32; description "Minimum delay value observed."; } leaf max-delay-value { Kumar, et al. Standards Track PAGE 23 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 type uint32; description "Maximum delay value observed."; } leaf average-delay-value { type uint32; description "Average delay value observed."; } } } grouping session-jitter-statistics { description "Grouping for per session jitter statistics."; container session-jitter-statistics { description "Summarized information about session jitter. By default, jitter is measured using IP Packet Delay Variation (IPDV) as defined in RFC 3393. When the other measurement method is used instead (e.g., Packet Delay Variation used in ITU-T Recommendation Y.1540, it can be indicated using protocol-id-meta-data defined in RPC operation of retrieval methods for connectionless OAM (RFC 8533). Note that only one measurement method for jitter is specified for interoperability reasons."; leaf unit-value { type identityref { base lime:time-unit-type; } default "lime:milliseconds"; description "Time units, where the options are s, ms, ns, etc."; } leaf min-jitter-value { type uint32; description "Minimum jitter value observed."; } leaf max-jitter-value { type uint32; description "Maximum jitter value observed."; } leaf average-jitter-value { type uint32; description "Average jitter value observed."; Kumar, et al. Standards Track PAGE 24 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 } } } grouping session-path-verification-statistics { description "Grouping for path verification statistics per session."; container session-path-verification-statistics { description "OAM path verification statistics per session."; leaf verified-count { type uint32 { range "0..4294967295"; } description "Total number of OAM packets that went through a path as intended. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } leaf failed-count { type uint32 { range "0..4294967295"; } description "Total number of OAM packets that went through an unintended path. The value of count will be set to zero (0) on creation and will thereafter increase monotonically until it reaches a maximum value of 2^32-1 (4294967295 decimal), when it wraps around and starts increasing again from zero."; } } } grouping session-type { description "This object indicates which kind of activation will be used by the current session."; leaf session-type { type enumeration { enum proactive { description "The current session is a proactive session."; Kumar, et al. Standards Track PAGE 25 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 } enum on-demand { description "The current session is an on-demand session."; } } default "on-demand"; description "Indicate which kind of activation will be used by the current session."; } } identity tp-address-technology-type { description "Test point address type."; } identity mac-address-type { base tp-address-technology-type; description "MAC address type."; } identity ipv4-address-type { base tp-address-technology-type; description "IPv4 address type."; } identity ipv6-address-type { base tp-address-technology-type; description "IPv6 address type."; } identity tp-attribute-type { base tp-address-technology-type; description "Test point attribute type."; } identity router-id-address-type { base tp-address-technology-type; description "System ID address type."; } Kumar, et al. Standards Track PAGE 26 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 identity as-number-address-type { base tp-address-technology-type; description "AS number address type."; } identity route-distinguisher-address-type { base tp-address-technology-type; description "Route Distinguisher address type."; } grouping tp-address { leaf tp-location-type { type identityref { base tp-address-technology-type; } mandatory true; description "Test point address type."; } container mac-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:mac-address-type')" { description "MAC address type."; } leaf mac-address { type yang:mac-address; mandatory true; description "MAC address."; } description "MAC address based TP addressing."; } container ipv4-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv4-address-type')" { description "IPv4 address type."; } leaf ipv4-address { type inet:ipv4-address; mandatory true; description "IPv4 address."; } Kumar, et al. Standards Track PAGE 27 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 description "IP address based TP addressing."; } container ipv6-address { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv6-address-type')" { description "IPv6 address type."; } leaf ipv6-address { type inet:ipv6-address; mandatory true; description "IPv6 address."; } description "IPv6 address based TP addressing."; } container tp-attribute { when "derived-from-or-self(../tp-location-type," + "'cl-oam:tp-attribute-type')" { description "Test point attribute type."; } leaf tp-attribute-type { type address-attribute-type; description "Test point type."; } choice tp-attribute-value { description "Test point value."; case ip-prefix { leaf ip-prefix { type inet:ip-prefix; description "Generic IPv4/IPv6 prefix. See Sections 3.2.13 and 3.2.14 of RFC 8029."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case bgp { leaf bgp { type inet:ip-prefix; description "BGP Labeled IPv4/IPv6 Prefix. See Sections Kumar, et al. Standards Track PAGE 28 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 3.2.11 and 3.2.12 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case tunnel { leaf tunnel-interface { type uint32; description "Basic IPv4/IPv6 Tunnel ID. See Sections 3.2.3 and 3.2.4 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures."; } } case pw { leaf remote-pe-address { type inet:ip-address; description "Remote PE address. See Section 3.2.8 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf pw-id { type uint32; description "Pseudowire ID is a non-zero 32-bit ID. See Sections 3.2.8 and 3.2.9 of RFC 8029 for details."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case vpls { leaf route-distinguisher { type rt:route-distinguisher; description "Route Distinguisher is an 8-octet identifier used to distinguish information about various L2VPNs advertised by a node."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } Kumar, et al. Standards Track PAGE 29 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 leaf sender-ve-id { type uint16; description "Sender's VE ID. The VE ID (VPLS Edge Identifier) is a 2-octet identifier."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf receiver-ve-id { type uint16; description "Receiver's VE ID. The VE ID (VPLS Edge Identifier) is a 2-octet identifier."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } case mpls-mldp { choice root-address { description "Root address choice."; case ip-address { leaf source-address { type inet:ip-address; description "IP address."; } leaf group-ip-address { type inet:ip-address; description "Group IP address."; } } case vpn { leaf as-number { type inet:as-number; description "The AS number that identifies an Autonomous System."; } } case global-id { leaf lsp-id { type string; description "LSP ID is an identifier of a LSP Kumar, et al. Standards Track PAGE 30 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 within a MPLS network."; reference "RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } } } } } description "Test Point Attribute Container."; } container system-info { when "derived-from-or-self(../tp-location-type," + "'cl-oam:router-id-address-type')" { description "System ID address type."; } leaf router-id { type rt:router-id; description "Router ID assigned to this node."; } description "Router ID container."; } description "TP Address."; } grouping tp-address-ni { description "Test point address with VRF."; leaf ni { type routing-instance-ref; description "The ni is used to describe virtual resource partitioning that may be present on a network device. An example of a common industry term for virtual resource partitioning is 'VRF instance'."; } uses tp-address; } grouping connectionless-oam-tps { list oam-neighboring-tps { key "index"; leaf index { Kumar, et al. Standards Track PAGE 31 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 type uint16 { range "0..65535"; } description "Index of a list of neighboring test points in layers up and down the stack for the same interface that are related to the current test point."; } leaf position { type int8 { range "-1..1"; } default "0"; description "The position of the neighboring test point relative to the current test point. Level 0 indicates a test point corresponding to a specific index in the same layer as the current test point. -1 means there is a test point corresponding to a specific index in the test point down the stack, and +1 means there is a test point corresponding to a specific index in the test point up the stack."; } choice tp-location { case mac-address { leaf mac-address-location { type yang:mac-address; description "MAC address."; } description "MAC address based TP addressing."; } case ipv4-address { leaf ipv4-address-location { type inet:ipv4-address; description "IPv4 address."; } description "IP address based TP addressing."; } case ipv6-address { leaf ipv6-address-location { type inet:ipv6-address; description "IPv6 address."; } Kumar, et al. Standards Track PAGE 32 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 description "IPv6 address based TP addressing."; } case as-number { leaf as-number-location { type inet:as-number; description "AS number location."; } description "AS number for point-to-multipoint OAM."; } case router-id { leaf router-id-location { type rt:router-id; description "System ID location."; } description "System ID."; } description "TP location."; } description "List of neighboring test points in the same layer that are related to current test point. If the neighboring test point is placed after the current test point, the position is specified as +1. If the neighboring test point is placed before the current test point, the position is specified as -1; if no neighboring test points are placed before or after the current test point in the same layer, the position is specified as 0."; } description "List of neighboring test points related to connectionless OAM."; } grouping tp-technology { choice technology { default "technology-null"; case technology-null { description "This is a placeholder when no technology is needed."; leaf tech-null { type empty; description "There is no technology to be defined."; Kumar, et al. Standards Track PAGE 33 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 } } description "Technology choice."; } description "OAM technology."; } grouping tp-tools { description "Test point OAM toolset."; container tp-tools { leaf continuity-check { type boolean; mandatory true; description "A flag indicating whether or not the Continuity Check function is supported."; reference "RFC 792: INTERNET CONTROL MESSAGE PROTOCOL RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 5880: Bidirectional Forwarding Detection RFC 5881: BFD for IPv4 and IPv6 RFC 5883: BFD for Multihop Paths RFC 5884: BFD for MPLS Label Switched Paths RFC 5885: BFD for PW VCCV RFC 6450: Multicast Ping Protocol RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } leaf path-discovery { type boolean; mandatory true; description "A flag indicating whether or not the path discovery function is supported."; reference "RFC 792: INTERNET CONTROL MESSAGE PROTOCOL RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification RFC 4884: Extended ICMP to Support Multi-Part Messages RFC 5837: Extending ICMP for Interface and Next-Hop Identification RFC 8029: Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures"; } Kumar, et al. Standards Track PAGE 34 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 description "Container for test point OAM toolset."; } } grouping test-point-location-info { uses tp-technology; uses tp-tools; anydata root { yangmnt:mount-point "root"; description "Root for models supported per test point."; } uses connectionless-oam-tps; description "Test point location."; } grouping test-point-locations { description "Group of test point locations."; leaf tp-location-type { type identityref { base tp-address-technology-type; } description "Test point location type."; } container ipv4-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv4-address-type')" { description "When test point location type is equal to IPv4 address."; } container test-point-ipv4-location-list { list test-point-locations { key "ipv4-location ni"; leaf ipv4-location { type inet:ipv4-address; description "IPv4 address."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance"; } Kumar, et al. Standards Track PAGE 35 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for IPv4 location types."; } container ipv6-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:ipv6-address-type')" { description "When test point location is equal to IPv6 address."; } container test-point-ipv6-location-list { list test-point-locations { key "ipv6-location ni"; leaf ipv6-location { type inet:ipv6-address; description "IPv6 address."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "ipv6 location type container."; } container mac-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:mac-address-type')" { description "When test point location type is equal to MAC address."; } Kumar, et al. Standards Track PAGE 36 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 container test-point-mac-address-location-list { list test-point-locations { key "mac-address-location"; leaf mac-address-location { type yang:mac-address; description "MAC address."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for MAC address location types."; } container group-as-number-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:as-number-address-type')" { description "When test point location type is equal to AS number."; } container test-point-as-number-location-list { list test-point-locations { key "as-number-location"; leaf as-number-location { type inet:as-number; description "AS number for point-to-multipoint OAM."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description Kumar, et al. Standards Track PAGE 37 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 "Container for AS number location types."; } container group-router-id-location-type { when "derived-from-or-self(../tp-location-type," + "'cl-oam:router-id-address-type')" { description "When test point location type is equal to system-info."; } container test-point-system-info-location-list { list test-point-locations { key "router-id-location"; leaf router-id-location { type rt:router-id; description "System ID."; } leaf ni { type routing-instance-ref; description "The ni is used to describe the corresponding network instance."; } uses test-point-location-info; description "List of test point locations."; } description "Serves as top-level container for test point location list."; } description "Container for system ID location types."; } } augment "/nd:networks/nd:network/nd:node" { description "Augments the /networks/network/node path defined in the ietf-network module (RFC 8345) with test-point-locations grouping."; uses test-point-locations; } grouping timestamp { description "Grouping for timestamp."; leaf timestamp-type { type identityref { Kumar, et al. Standards Track PAGE 38 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 base lime:timestamp-type; } description "Type of timestamp, such as Truncated PTP or NTP."; } container timestamp-64bit { when "derived-from-or-self(../timestamp-type," + "'lime:truncated-ptp')" + "or derived-from-or-self(../timestamp-type," + "'lime:ntp64')" { description "Only applies when PTP truncated or 64-bit NTP timestamp."; } leaf timestamp-sec { type uint32; description "Absolute timestamp in seconds as per IEEE 1588v2 or seconds part in 64-bit NTP timestamp."; } leaf timestamp-nanosec { type uint32; description "Fractional part in nanoseconds as per IEEE 1588v2 or fractional part in 64-bit NTP timestamp."; } description "Container for 64-bit timestamp. The Network Time Protocol (NTP) 64-bit timestamp format is defined in RFC 5905. The PTP truncated timestamp format is defined in IEEE 1588v1."; reference "RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Specification IEEE 1588v1: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Version 1"; } container timestamp-80bit { when "derived-from-or-self(../timestamp-type, 'lime:ptp80')" { description "Only applies when 80-bit PTP timestamp."; } if-feature "ptp-long-format"; leaf timestamp-sec { type uint64 { range "0..281474976710655"; } description "48-bit timestamp in seconds as per IEEE 1588v2."; Kumar, et al. Standards Track PAGE 39 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 } leaf timestamp-nanosec { type uint32; description "Fractional part in nanoseconds as per IEEE 1588v2."; } description "Container for 80-bit timestamp."; } container ntp-timestamp-32bit { when "derived-from-or-self(../timestamp-type," + "'lime:truncated-ntp')" { description "Only applies when 32-bit NTP short-format timestamp."; } if-feature "ntp-short-format"; leaf timestamp-sec { type uint16; description "Timestamp in seconds as per short-format NTP."; } leaf timestamp-nanosec { type uint16; description "Truncated fractional part in 16-bit NTP timestamp."; } description "Container for 32-bit timestamp RFC 5905."; reference "RFC 5905: Network Time Protocol Version 4: Protocol and Algorithms Specification."; } container icmp-timestamp-32bit { when "derived-from-or-self(../timestamp-type, 'lime:icmp')" { description "Only applies when ICMP timestamp."; } if-feature "icmp-timestamp"; leaf timestamp-millisec { type uint32; description "Timestamp in milliseconds for ICMP timestamp."; } description "Container for 32-bit timestamp. See RFC 792 for ICMP timestamp format."; } } Kumar, et al. Standards Track PAGE 40 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 grouping path-discovery-data { description "Data output from nodes related to path discovery."; container src-test-point { description "Source test point."; uses tp-address-ni; } container dest-test-point { description "Destination test point."; uses tp-address-ni; } leaf sequence-number { type uint64; default "0"; description "Sequence number in data packets. A value of zero indicates that no sequence number is sent."; } leaf hop-cnt { type uint8; default "0"; description "Hop count. A value of zero indicates that no hop count is sent."; } uses session-packet-statistics; uses session-error-statistics; uses session-delay-statistics; uses session-jitter-statistics; container path-verification { description "Optional information related to path verification."; leaf flow-info { type string; description "Information that refers to the flow."; } uses session-path-verification-statistics; } container path-trace-info { description "Optional per-hop path trace information about test points. The path trace information list typically has a single element for per-hop cases such as path-discovery RPC operation but allows a list of hop-related information for other types of data retrieval methods."; Kumar, et al. Standards Track PAGE 41 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 list path-trace-info-list { key "index"; description "Path trace information list."; leaf index { type uint32; description "Trace information index."; } uses tp-address-ni; uses timestamp; leaf ingress-intf-name { type if:interface-ref; description "Ingress interface name."; } leaf egress-intf-name { type if:interface-ref; description "Egress interface name."; } leaf queue-depth { type uint32; description "Length of the queue of the interface from where the packet is forwarded out. The queue depth could be the current number of memory buffers used by the queue, and a packet can consume one or more memory buffers, thus constituting device-level information."; } leaf transit-delay { type uint32; description "Time in nanoseconds that the packet spent transiting a node."; } leaf app-meta-data { type uint64; description "Application-specific data added by node."; } } } } grouping continuity-check-data { description "Continuity Check data output from nodes."; Kumar, et al. Standards Track PAGE 42 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 container src-test-point { description "Source test point."; uses tp-address-ni; leaf egress-intf-name { type if:interface-ref; description "Egress interface name."; } } container dest-test-point { description "Destination test point."; uses tp-address-ni; leaf ingress-intf-name { type if:interface-ref; description "Ingress interface name."; } } leaf sequence-number { type uint64; default "0"; description "Sequence number in data packets. A value of zero indicates that no sequence number is sent."; } leaf hop-cnt { type uint8; default "0"; description "Hop count. A value of zero indicates that no hop count is sent."; } uses session-packet-statistics; uses session-error-statistics; uses session-delay-statistics; uses session-jitter-statistics; } container cc-session-statistics-data { if-feature "continuity-check"; config false; list cc-session-statistics { key "type"; leaf type { type identityref { base traffic-type; Kumar, et al. Standards Track PAGE 43 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 } description "Type of traffic."; } container cc-ipv4-sessions-statistics { when "../type = 'ipv4'" { description "Only applies when traffic type is IPv4."; } description "CC ipv4 sessions."; uses cc-session-statistics; } container cc-ipv6-sessions-statistics { when "../type = 'ipv6'" { description "Only applies when traffic type is IPv6."; } description "CC IPv6 sessions."; uses cc-session-statistics; } description "List of CC session statistics data."; } description "CC operational information."; } } <CODE ENDS> 6. Connectionless Model Applicability The "ietf-connectionless-oam" module defined in this document provides a technology-independent abstraction of key OAM constructs for OAM protocols that use connectionless communication. This module can be further extended to include technology-specific details, e.g., adding new data nodes with technology-specific functions and parameters into proper anchor points of the base model, so as to develop a technology-specific connectionless OAM model. This section demonstrates the usability of the connectionless YANG OAM data model to various connectionless OAM technologies, e.g., BFD and LSP ping. Note that, in this section, several snippets of technology-specific model extensions are presented for illustrative purposes. The complete model extensions should be worked on in the working groups of the respective protocols. Kumar, et al. Standards Track PAGE 44 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 6.1. BFD Extension RFC 7276 defines BFD as a connection-oriented protocol. It is used to monitor a connectionless protocol in the case of basic BFD for IP. 6.1.1. Augment Method The following sections show how the "ietf-connectionless-oam" module can be extended to cover BFD technology. For this purpose, a set of extensions are introduced such as the technology-type extension and test-point attributes extension. Note that a dedicated BFD YANG data model [BFD-YANG] is also standardized. Augmentation of the "ietf-connectionless-oam" module with BFD-specific details provides an alternative approach with a unified view of management information across various OAM protocols. The BFD-specific details can be the grouping defined in the BFD model, thereby avoiding duplication of effort. 6.1.1.1. Technology-Type Extension No BFD technology type has been defined in the "ietf-connectionless- oam" module. Therefore, a technology-type extension is required in the module extension. The snippet below depicts an example of adding the "bfd" type as an augment to the "ietf-connectionless-oam" module: augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations/coam:technology" { leaf bfd{ type string; } } 6.1.1.2. Test Point Attributes Extension To support BFD, the "ietf-connectionless-oam" module can be extended by adding specific parameters into the "test-point-locations" list and/or adding a new location type such as "BFD over MPLS TE" under "location-type". Kumar, et al. Standards Track PAGE 45 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 6.1.1.2.1. Define and Insert New Nodes into Corresponding test-point- location In the "ietf-connectionless-oam" module, multiple "test-point- location" lists are defined under the "location-type" choice node. Therefore, to derive a model for some BFD technologies (such as IP single-hop, IP multihop, etc.), data nodes for BFD-specific details need to be added to the corresponding "test-point-locations" list. In this section, some groupings that are defined in [BFD-YANG] are reused as follows. The snippet below shows how the "ietf-connectionless-oam" module can be extended to support "BFD IP Single-Hop": augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations" { container session-cfg { description "BFD IP single-hop session configuration"; list sessions { key "interface dest-addr"; description "List of IP single-hop sessions"; leaf interface { type if:interface-ref; description "Interface on which the BFD session is running."; } leaf dest-addr { type inet:ip-address; description "IP address of the peer"; } uses bfd:bfd-grouping-common-cfg-parms; uses bfd:bfd-grouping-echo-cfg-parms; } } } Similar augmentations can be defined to support other BFD technologies such as BFD IP Multihop, BFD over MPLS, etc. Kumar, et al. Standards Track PAGE 46 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 6.1.1.2.2. Add New location-type Cases In the "ietf-connectionless-oam" module, If there is no appropriate "location-type" case that can be extended, a new "location-type" case can be defined and inserted into the "location-type" choice node. Therefore, there is flexibility -- the module user can add "location- type" to support other types of test point that are not defined in the "ietf-connectionless-oam" module. In this section, a new "location-type" case is added, and some groupings that are defined in [BFD-YANG] are reused as follows. The snippet below shows how the "ietf-connectionless-oam" module can be extended to support "BFD over MPLS-TE": augment "/nd:networks/nd:network/nd:node/coam:location-type"{ case te-location{ list test-point-location-list{ key "tunnel-name"; leaf tunnel-name{ type leafref{ path "/te:te/te:tunnels/te:tunnel/te:name"; } description "Point to a TE instance."; } uses bfd:bfd-grouping-common-cfg-parms; uses bfd-mpls:bfd-encap-cfg; } } } Similar augmentations can be defined to support other BFD technologies such as BFD over LAG, etc. 6.1.2. Schema Mount An alternative method is using the schema mount mechanism [RFC 8528] in the "ietf-connectionless-oam" module. Within the "test-point- locations" list, a "root" attribute is defined to provide a mount point for models that will be added onto per "test-point-locations". Therefore, the "ietf-connectionless-oam" module can provide a place in the node hierarchy where other OAM YANG data models can be attached, without any special extension in the "ietf-connectionless- oam" YANG data module [RFC 8528]. Note that the limitation of the schema mount method is that it's not allowed to specify certain modules that are required to be mounted under a mount point. Kumar, et al. Standards Track PAGE 47 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 The snippet below depicts the definition of the "root" attribute. anydata root { yangmnt:mount-point root; description "Root for models that are supported per test point"; } The following section shows how the "ietf-connectionless-oam" module can use schema mount to support BFD technology. 6.1.2.1. BFD Modules Might Be Populated in schema-mounts To support BFD technology, "ietf-bfd-ip-sh" and "ietf-bfd-ip-mh" YANG modules might be populated in the "schema-mounts" container: <schema-mounts xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount"> <mount-point> <module> ietf-connectionless-oam </module> <name>root</name> <use-schema> <name>root</name> </use-schema> </mount-point> <schema> <name>root</name> <module> <name>ietf-bfd-ip-sh </name> <revision>2016-07-04</revision> <namespace> urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh </namespace> <conformance-type>implement</conformance-type> </module> <module> <name>ietf-bfd-ip-mh</name> <revision> 2016-07-04</revision> <namespace> urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh </namespace> <conformance-type>implement</conformance-type> </module> </schema> </schema-mounts> Kumar, et al. Standards Track PAGE 48 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 and the "ietf-connectionless-oam" module might have: <ietf-connectionless-oam uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"> ...... <test-point-locations> <ipv4-location>192.0.2.1</ipv4-location> ...... <root> <ietf-bfd-ip-sh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-sh"> <ip-sh> foo ...... </ip-sh> </ietf-bfd-ip-sh> <ietf-bfd-ip-mh uri="urn:ietf:params:xml:ns:yang:ietf-bfd-ip-mh"> <ip-mh> foo ...... </ip-mh> </ietf-bfd-ip-mh> </root> </test-point-locations> </ietf-connectionless-oam> 6.2. LSP Ping Extension 6.2.1. Augment Method The following sections show how the "ietf-connectionless-oam" module can be extended to support LSP ping technology. For this purpose, a set of extensions are introduced such as the "technology-type" extension and the test-point "attributes" extension. Note that an LSP Ping YANG data model is being specified [LSP-PING-YANG]. As with BFD, users can choose to use the "ietf-connectionless-oam" as the basis and augment the "ietf-connectionless-oam" model with details specific to LSP Ping in the model extension to provide a unified view across different technologies. The details that are specific to LSP Ping can be the grouping defined in the LSP ping model to avoid duplication of effort. 6.2.1.1. Technology-Type Extension No LSP Ping technology type has been defined in the "ietf-connectionless-oam" module. Therefore, a technology-type extension is required in the module extension. Kumar, et al. Standards Track PAGE 49 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 The snippet below depicts an example of augmenting "ietf-connectionless-oam" with "lsp-ping" type: augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations/coam:technology" { leaf lsp-ping{ type string; } } 6.2.1.2. Test Point Attributes Extension To support LSP Ping, the "ietf-connectionless-oam" module can be extended and parameters specific to LSP Ping can be defined and put on the "test-point-locations" list. Users can reuse the attributes or groupings that are defined in [LSP-PING-YANG] as follows: The snippet below depicts an example of augmenting the "test-point- locations" list with LSP Ping attributes: augment "/nd:networks/nd:network/nd:node/" +"coam:location-type/coam:ipv4-location-type" +"/coam:test-point-ipv4-location-list/" +"coam:test-point-locations" { list lsp-ping { key "lsp-ping-name"; leaf lsp-ping-name { type string { length "1..31"; } mandatory "true"; description "LSP Ping test name."; ...... } 6.2.2. Schema Mount An alternative method is using the schema mount mechanism [RFC 8528] in the "ietf-connectionless-oam" module. Within the "test-point- locations" list, a "root" attribute is defined to provide a mounted point for models mounted per "test-point-locations". Therefore, the "ietf-connectionless-oam" model can provide a place in the node Kumar, et al. Standards Track PAGE 50 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 hierarchy where other OAM YANG data models can be attached, without any special extension in the "ietf-connectionless-oam" YANG data module [RFC 8528]. Note that the limitation of the schema mount method is that it's not allowed to specify certain modules that are required to be mounted under a mount point. The snippet below depicts the definition of "root" attribute. anydata root { yangmnt:mount-point root; description "Root for models supported per test point"; } The following section shows how the "ietf-connectionless-oam" module can use schema mount to support LSP Ping technology. 6.2.2.1. LSP Ping Modules Might Be Populated in schema-mounts To support LSP Ping technology, the "ietf-lsp-ping" YANG module [LSP-PING-YANG] might be populated in the "schema-mounts" container: <schema-mounts xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-schema-mount"> <mount-point> <module> ietf-connectionless-oam </module> <name>root</name> <use-schema> <name>root</name> </use-schema> </mount-point> <schema> <name>root</name> <module> <name>ietf-lsp-ping </name> <revision>2016-03-18</revision> <namespace> urn:ietf:params:xml:ns:yang: ietf-lsp-ping </namespace> <conformance-type>implement</conformance-type> </module> </schema> </schema-mounts> Kumar, et al. Standards Track PAGE 51 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 and the "ietf-connectionless-oam" module might have: <ietf-connectionless-oam uri="urn:ietf:params:xml:ns:yang:ietf-connectionless-oam"> ...... <test-point-locations> <ipv4-location> 192.0.2.1</ipv4-location> ...... <root> <ietf-lsp-ping uri="urn:ietf:params:xml:ns:yang:ietf-lsp-ping"> <lsp-pings> foo ...... </lsp-pings> </ietf-lsp-ping> </root> </test-point-locations> </ietf-connectionless-oam> 7. Security Considerations The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC 6241] or RESTCONF [RFC 8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC 6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC 8446]. The NETCONF Configuration Access Control Model (NACM) [RFC 8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability: /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv4- location-type/cl-oam:test-point-ipv4-location-list/cl-oam:test- point-locations/ Kumar, et al. Standards Track PAGE 52 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:ipv6- location-type/cl-oam:test-point-ipv6-location-list/cl-oam:test- point-locations/ /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:mac- location-type/cl-oam:test-point-mac-address-location-list/cl- oam:test-point-locations/ /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group- as-number-location-type/cl-oam:test-point-as-number-location-list/ cl-oam:test-point-locations/ /nd:networks/nd:network/nd:node/cl-oam:location-type/cl-oam:group- router-id-location-type/cl-oam:test-point-system-info-location- list/cl-oam:test-point-locations/ Unauthorized access to any of these lists can adversely affect OAM management system handling of end-to-end OAM and coordination of OAM within underlying network layers. This may lead to inconsistent configuration, reporting, and presentation for the OAM mechanisms used to manage the network. Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability: /coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-count/ /coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count/ /coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/ /coam:cc-session-statistics-data/cl-oam:cc-ipv4-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down- count/ /coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-count/ /coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-up-count// Kumar, et al. Standards Track PAGE 53 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 /coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-down-count/ /coam:cc-session-statistics-data/cl-oam:cc-ipv6-sessions- statistics/cl-oam:cc-session-statistics/cl-oam:session-admin-down- count/ 8. IANA Considerations This document registers URIs in the "IETF XML Registry" [RFC 3688]. Following the format in [RFC 3688], the following registrations have been made. URI: urn:ietf:params:xml:ns:yang:ietf-lime-time-types Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. URI: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam Registrant Contact: The IESG. XML: N/A; the requested URI is an XML namespace. This document registers two YANG modules in the "YANG Module Names" registry [RFC 6020]. Name: ietf-lime-time-types Namespace: urn:ietf:params:xml:ns:yang:ietf-lime-time-types Prefix: lime Reference: RFC 8532 Name: ietf-connectionless-oam Namespace: urn:ietf:params:xml:ns:yang:ietf-connectionless-oam Prefix: cl-oam Reference: RFC 8532 9. References 9.1. Normative References [RFC 792] Postel, J., "Internet Control Message Protocol", RFC 792, September 1981. [RFC 1831] Srinivasan, R., "RPC: Remote Procedure Call Protocol Specification Version 2", RFC 1831, DOI 10.17487/RFC 1831, August 1995, <https://www.rfc-editor.org/info/RFC 1831>. [RFC 3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC 3688, January 2004, <https://www.rfc-editor.org/info/RFC 3688>. Kumar, et al. Standards Track PAGE 54 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 [RFC 4382] Nadeau, T., Ed. and H. van der Linde, Ed., "MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information Base", RFC 4382, DOI 10.17487/RFC 4382, February 2006, <https://www.rfc-editor.org/info/RFC 4382>. [RFC 4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification", STD 89, RFC 4443, DOI 10.17487/RFC 4443, March 2006, <https://www.rfc-editor.org/info/RFC 4443>. [RFC 4656] Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M. Zekauskas, "A One-way Active Measurement Protocol (OWAMP)", RFC 4656, DOI 10.17487/RFC 4656, September 2006, <https://www.rfc-editor.org/info/RFC 4656>. [RFC 5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", RFC 5357, DOI 10.17487/RFC 5357, October 2008, <https://www.rfc-editor.org/info/RFC 5357>. [RFC 5880] Katz, D. and D. Ward, "Bidirectional Forwarding Detection (BFD)", RFC 5880, DOI 10.17487/RFC 5880, June 2010, <https://www.rfc-editor.org/info/RFC 5880>. [RFC 5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, DOI 10.17487/RFC 5905, June 2010, <https://www.rfc-editor.org/info/RFC 5905>. [RFC 6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC 6241, June 2011, <https://www.rfc-editor.org/info/RFC 6241>. [RFC 6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC 6242, June 2011, <https://www.rfc-editor.org/info/RFC 6242>. [RFC 6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC 6991, July 2013, <https://www.rfc-editor.org/info/RFC 6991>. [RFC 7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC 7950, August 2016, <https://www.rfc-editor.org/info/RFC 7950>. Kumar, et al. Standards Track PAGE 55 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 [RFC 8029] Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N., Aldrin, S., and M. Chen, "Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures", RFC 8029, DOI 10.17487/RFC 8029, March 2017, <https://www.rfc-editor.org/info/RFC 8029>. [RFC 8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC 8040, January 2017, <https://www.rfc-editor.org/info/RFC 8040>. [RFC 8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger, "Common YANG Data Types for the Routing Area", RFC 8294, DOI 10.17487/RFC 8294, December 2017, <https://www.rfc-editor.org/info/RFC 8294>. [RFC 8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC 8341, March 2018, <https://www.rfc-editor.org/info/RFC 8341>. [RFC 8343] Bjorklund, M., "A YANG Data Model for Interface Management", RFC 8343, DOI 10.17487/RFC 8343, March 2018, <https://www.rfc-editor.org/info/RFC 8343>. [RFC 8345] Clemm, A., Medved, J., Varga, R., Bahadur, N., Ananthakrishnan, H., and X. Liu, "A YANG Data Model for Network Topologies", RFC 8345, DOI 10.17487/RFC 8345, March 2018, <https://www.rfc-editor.org/info/RFC 8345>. [RFC 8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC 8446, August 2018, <https://www.rfc-editor.org/info/RFC 8446>. [RFC 8529] Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X. Liu, "YANG Model for Network Instances", RFC 8529, DOI 10.17487/RFC 8529, March 2019, <https://www.rfc-editor.org/info/RFC 8529>. 9.2. Informative References [BFD-YANG] Rahman, R., Zheng, L., Jethanandani, M., Networks, J., and G. Mirsky, "YANG Data Model for Bidirectional Forwarding Detection (BFD)", Work in Progress, draft-ietf-bfd-yang- 17, August 2018. [G.800] "Unified functional architecture of transport networks", ITU-T Recommendation G.800, 2016. Kumar, et al. Standards Track PAGE 56 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 [G.8013] "OAM functions and mechanisms for Ethernet based networks", ITU-T Recommendation G.8013/Y.1731, 2013. [IEEE.1588v1] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Version 1", IEEE Std 1588, 2002. [IEEE.1588v2] "IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems Version 2", IEEE Std 1588, 2008. [LSP-PING-YANG] Zheng, L., Zheng, G., Mirsky, G., Rahman, R., and F. Iqbal, "YANG Data Model for LSP-Ping", Work in Progress, draft-zheng-mpls-lsp-ping-yang-cfg-10, January 2019. [RFC 5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching (MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic Class" Field", RFC 5462, DOI 10.17487/RFC 5462, February 2009, <https://www.rfc-editor.org/info/RFC 5462>. [RFC 6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC 6020, October 2010, <https://www.rfc-editor.org/info/RFC 6020>. [RFC 6136] Sajassi, A., Ed. and D. Mohan, Ed., "Layer 2 Virtual Private Network (L2VPN) Operations, Administration, and Maintenance (OAM) Requirements and Framework", RFC 6136, DOI 10.17487/RFC 6136, March 2011, <https://www.rfc-editor.org/info/RFC 6136>. [RFC 7276] Mizrahi, T., Sprecher, N., Bellagamba, E., and Y. Weingarten, "An Overview of Operations, Administration, and Maintenance (OAM) Tools", RFC 7276, DOI 10.17487/RFC 7276, June 2014, <https://www.rfc-editor.org/info/RFC 7276>. [RFC 8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC 8340, March 2018, <https://www.rfc-editor.org/info/RFC 8340>. [RFC 8528] Bjorklund, M. and L. Lhotka, "YANG Schema Mount", RFC 8528, DOI 10.17487/RFC 8528, March 2019, <https://www.rfc-editor.org/info/RFC 8528>. Kumar, et al. Standards Track PAGE 57 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 [RFC 8531] Kumar, D., Wu, Q., and M. Wang, "Generic YANG Data Model for Connection-Oriented Operations, Administration, and Maintenance (OAM) Protocols", RFC 8531, DOI 10.17487/RFC 8531, April 2019, <https://www.rfc-editor.org/info/RFC 8531>. [RFC 8533] Kumar, D., Wang, M., Wu, Q., Ed., Rahman, R., and S. Raghavan, " A YANG Data Model for Retrieval Methods for the Management of Operations, Administration, and Maintenance (OAM) Protocols That Use Connectionless Communications", RFC 8533, DOI 10.17487/RFC 8533, April 2019. Acknowledgments The authors of this document would like to thank Elwyn Davies, Alia Atlas, Brian E. Carpenter, Greg Mirsky, Adam Roach, Alissa Cooper, Eric Rescorla, Ben Campbell, Benoit Claise, Kathleen Moriarty, Carlos Pignataro, and others for their substantive review and comments, and proposals to stabilize and improve the document. Kumar, et al. Standards Track PAGE 58 top

RFC 8532 Connectionless OAM YANG Data Model April 2019 Authors' Addresses Deepak Kumar CISCO Systems 510 McCarthy Blvd Milpitas, CA 95035 United States of America Email: dekumar@cisco.com Michael Wang Huawei Technologies, Co., Ltd 101 Software Avenue, Yuhua District Nanjing 210012 China Email: wangzitao@huawei.com Qin Wu (editor) Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu 210012 China Email: bill.wu@huawei.com Reshad Rahman Cisco Systems 2000 Innovation Drive Kanata, Ontario K2K 3E8 Canada Email: rrahman@cisco.com Srihari Raghavan Cisco Systems Tril Infopark Sez, Ramanujan IT City Neville Block, 2nd floor, Old Mahabalipuram Road Chennai, Tamil Nadu 600113 India Email: srihari@cisco.com Kumar, et al. Standards Track PAGE 59 top

RFC TOTAL SIZE: 107655 bytes PUBLICATION DATE: Wednesday, April 17th, 2019 LEGAL RIGHTS: The IETF Trust (see BCP 78)


RFC-ARCHIVE.ORG

© RFC 8532: The IETF Trust, Wednesday, April 17th, 2019
© the RFC Archive, 2024, RFC-Archive.org
Maintainer: J. Tunnissen

Privacy Statement