|
RFC Home |
Full RFC Index |
Recent RFCs |
RFC Standards |
Best Current Practice |
RFC Errata |
1 April RFC |
|
||||||
|
IETF RFC 9276
Last modified on Thursday, August 11th, 2022 Permanent link to RFC 9276 Search GitHub Wiki for RFC 9276 Show other RFCs mentioning RFC 9276 Internet Engineering Task Force (IETF) W. Hardaker Request for Comments: 9276 USC/ISI BCP: 236 V. Dukhovni Updates: 5155 Bloomberg, L.P. Category: Best Current Practice August 2022 ISSN: 2070-1721 Guidance for NSEC3 Parameter Settings Abstract NSEC3 is a DNSSEC mechanism providing proof of nonexistence by asserting that there are no names that exist between two domain names within a zone. Unlike its counterpart NSEC, NSEC3 avoids directly disclosing the bounding domain name pairs. This document provides guidance on setting NSEC3 parameters based on recent operational deployment experience. This document updates RFC 5155 with guidance about selecting NSEC3 iteration and salt parameters. Status of This Memo This memo documents an Internet Best Current Practice. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 7841. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/RFC 9276. Copyright Notice Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction 1.1. Requirements Notation 2. NSEC3 Parameter Value Discussions 2.1. Algorithms 2.2. Flags 2.3. Iterations 2.4. Salt 3. Recommendations for Deploying and Validating NSEC3 Records 3.1. Best Practice for Zone Publishers 3.2. Recommendation for Validating Resolvers 3.3. Recommendation for Primary and Secondary Relationships 4. Security Considerations 5. Operational Considerations 6. IANA Considerations 7. References 7.1. Normative References 7.2. Informative References Appendix A. Deployment Measurements at Time of Publication Appendix B. Computational Burdens of Processing NSEC3 Iterations Acknowledgments Authors' Addresses 1. Introduction As with NSEC [RFC 4035], NSEC3 [RFC 5155] provides proof of nonexistence that consists of signed DNS records establishing the nonexistence of a given name or associated Resource Record Type (RRTYPE) in a DNSSEC-signed zone [RFC 4035]. However, in the case of NSEC3, the names of valid nodes in the zone are obfuscated through (possibly multiple iterations of) hashing (currently only SHA-1 is in use on the Internet). NSEC3 also provides "opt-out support", allowing for blocks of unsigned delegations to be covered by a single NSEC3 record. Use of the opt-out feature allows large registries to only sign as many NSEC3 records as there are signed DS or other Resource Record sets (RRsets) in the zone; with opt-out, unsigned delegations don't require additional NSEC3 records. This sacrifices the tamper- resistance of the proof of nonexistence offered by NSEC3 in order to reduce memory and CPU overheads. NSEC3 records have a number of tunable parameters that are specified via an NSEC3PARAM record at the zone apex. These parameters are the hash algorithm, the processing flags, the number of hash iterations, and the salt. Each of these has security and operational considerations that impact both zone owners and validating resolvers. This document provides some best-practice recommendations for setting the NSEC3 parameters. 1.1. Requirements Notation The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC 2119] [RFC 8174] when, and only when, they appear in all capitals, as shown here. 2. NSEC3 Parameter Value Discussions The following sections describe the background of the parameters for the NSEC3 and NSEC3PARAM RRTYPEs. 2.1. Algorithms The algorithm field is not discussed by this document. Readers are encouraged to read [RFC 8624] for guidance about DNSSEC algorithm usage. 2.2. Flags The NSEC3PARAM flags field currently contains only reserved and unassigned flags. However, individual NSEC3 records contain the "Opt-Out" flag [RFC 5155] that specifies whether that NSEC3 record provides proof of nonexistence. In general, NSEC3 with the Opt-Out flag enabled should only be used in large, highly dynamic zones with a small percentage of signed delegations. Operationally, this allows for fewer signature creations when new delegations are inserted into a zone. This is typically only necessary for extremely large registration points providing zone updates faster than real-time signing allows or when using memory-constrained hardware. Operators considering the use of NSEC3 are advised to carefully weigh the costs and benefits of choosing NSEC3 over NSEC. Smaller zones, or large but relatively static zones, are encouraged to not use the opt-opt flag and to take advantage of DNSSEC's authenticated denial of existence. 2.3. Iterations NSEC3 records are created by first hashing the input domain and then repeating that hashing using the same algorithm a number of times based on the iteration parameter in the NSEC3PARAM and NSEC3 records. The first hash with NSEC3 is typically sufficient to discourage zone enumeration performed by "zone walking" an unhashed NSEC chain. Note that [RFC 5155] describes the Iterations field as follows | The Iterations field defines the number of additional times the | hash function has been performed. This means that an NSEC3 record with an Iterations field of 0 actually requires one hash iteration. Only determined parties with significant resources are likely to try and uncover hashed values, regardless of the number of additional iterations performed. If an adversary really wants to expend significant CPU resources to mount an offline dictionary attack on a zone's NSEC3 chain, they'll likely be able to find most of the "guessable" names despite any level of additional hashing iterations. Most names published in the DNS are rarely secret or unpredictable. They are published to be memorable, used and consumed by humans. They are often recorded in many other network logs such as email logs, certificate transparency logs, web page links, intrusion- detection systems, malware scanners, email archives, etc. Many times a simple dictionary of commonly used domain names prefixes (www, mail, imap, login, database, etc.) can be used to quickly reveal a large number of labels within a zone. Because of this, there are increasing performance costs yet diminishing returns associated with applying additional hash iterations beyond the first. Although Section 10.3 of [RFC 5155] specifies the upper bounds for the number of hash iterations to use, there is no published guidance for zone owners about good values to select. Recent academic studies have shown that NSEC3 hashing provides only moderate protection [GPUNSEC3] [ZONEENUM]. 2.4. Salt NSEC3 records provide an additional salt value, which can be combined with a Fully Qualified Domain Name (FQDN) to influence the resulting hash, but properties of this extra salt are complicated. In cryptography, salts generally add a layer of protection against offline, stored dictionary attacks by combining the value to be hashed with a unique "salt" value. This prevents adversaries from building up and remembering a single dictionary of values that can translate a hash output back to the value that it was derived from. In the case of DNS, the situation is different because the hashed names placed in NSEC3 records are always implicitly "salted" by hashing the FQDN from each zone. Thus, no single pre-computed table works to speed up dictionary attacks against multiple target zones. An attacker is always required to compute a complete dictionary per zone, which is expensive in both storage and CPU time. To understand the role of the additional NSEC3 salt field, we have to consider how a typical zone walking attack works. Typically, the attack has two phases: online and offline. In the online phase, an attacker "walks the zone" by enumerating (almost) all hashes listed in NSEC3 records and storing them for the offline phase. Then, in the offline cracking phase, the attacker attempts to crack the underlying hash. In this phase, the additional salt value raises the cost of the attack only if the salt value changes during the online phase of the attack. In other words, an additional, constant salt value does not change the cost of the attack. Changing a zone's salt value requires the construction of a complete new NSEC3 chain. This is true both when re-signing the entire zone at once and when incrementally signing it in the background where the new salt is only activated once every name in the chain has been completed. As a result, re-salting is a very complex operation, with significant CPU time, memory, and bandwidth consumption. This makes very frequent re-salting impractical and renders the additional salt field functionally useless. 3. Recommendations for Deploying and Validating NSEC3 Records The following subsections describe recommendations for the different operating realms within the DNS. 3.1. Best Practice for Zone Publishers First, if the operational or security features of NSEC3 are not needed, then NSEC SHOULD be used in preference to NSEC3. NSEC3 requires greater computational power (see Appendix B) for both authoritative servers and validating clients. Specifically, there is a nontrivial complexity in finding matching NSEC3 records to randomly generated prefixes within a DNS zone. NSEC mitigates this concern. If NSEC3 must be used, then an iterations count of 0 MUST be used to alleviate computational burdens. Note that extra iteration counts other than 0 increase the impact of CPU-exhausting DoS attacks, and also increase the risk of interoperability problems. Note that deploying NSEC with minimally covering NSEC records [RFC 4470] also incurs a cost, and zone owners should measure the computational difference in deploying either [RFC 4470] or NSEC3. In short, for all zones, the recommended NSEC3 parameters are as shown below: ; SHA-1, no extra iterations, empty salt: ; bcp.example. IN NSEC3PARAM 1 0 0 - For small zones, the use of opt-out-based NSEC3 records is NOT RECOMMENDED. For very large and sparsely signed zones, where the majority of the records are insecure delegations, opt-out MAY be used. Operators SHOULD NOT use a salt by indicating a zero-length salt value instead (represented as a "-" in the presentation format). If salts are used, note that since the NSEC3PARAM RR is not used by validating resolvers (see Section 4 of [RFC 5155]), the iterations and salt parameters can be changed without the need to wait for RRsets to expire from caches. A complete new NSEC3 chain needs to be constructed and the full zone needs to be re-signed. 3.2. Recommendation for Validating Resolvers Because there has been a large growth of open (public) DNSSEC validating resolvers that are subject to compute resource constraints when handling requests from anonymous clients, this document recommends that validating resolvers reduce their iteration count limits over time. Specifically, validating resolver operators and validating resolver software implementers are encouraged to continue evaluating NSEC3 iteration count deployment trends and lower their acceptable iteration limits over time. Because treating a high iterations count as insecure leaves zones subject to attack, validating resolver operators and validating resolver software implementers are further encouraged to lower their default limit for returning SERVFAIL when processing NSEC3 parameters containing large iteration count values. See Appendix A for measurements taken near the time of publication of this document and potential starting points. Validating resolvers MAY return an insecure response to their clients when processing NSEC3 records with iterations larger than 0. Note also that a validating resolver returning an insecure response MUST still validate the signature over the NSEC3 record to ensure the iteration count was not altered since record publication (see Section 10.3 of [RFC 5155]). Validating resolvers MAY also return a SERVFAIL response when processing NSEC3 records with iterations larger than 0. Validating resolvers MAY choose to ignore authoritative server responses with iteration counts greater than 0, which will likely result in returning a SERVFAIL to the client when no acceptable responses are received from authoritative servers. Validating resolvers returning an insecure or SERVFAIL answer to their client after receiving and validating an unsupported NSEC3 parameter from the authoritative server(s) SHOULD return an Extended DNS Error (EDE) [RFC 8914] EDNS0 option of value 27. Validating resolvers that choose to ignore a response with an unsupported iteration count (and that do not validate the signature) MUST NOT return this EDE option. Note that this specification updates [RFC 5155] by significantly decreasing the requirements originally specified in Section 10.3 of [RFC 5155]. See the Security Considerations (Section 4) for arguments on how to handle responses with non-zero iteration count. 3.3. Recommendation for Primary and Secondary Relationships Primary and secondary authoritative servers for a zone that are not being run by the same operational staff and/or using the same software and configuration must take into account the potential differences in NSEC3 iteration support. Operators of secondary services should advertise the parameter limits that their servers support. Correspondingly, operators of primary servers need to ensure that their secondaries support the NSEC3 parameters they expect to use in their zones. To ensure reliability, after primaries change their iteration counts, they should query their secondaries with known nonexistent labels to verify the secondary servers are responding as expected. 4. Security Considerations This entire document discusses security considerations with various parameter selections of NSEC3 and NSEC3PARAM fields. The point where a validating resolver returns insecure versus the point where it returns SERVFAIL must be considered carefully. Specifically, when a validating resolver treats a zone as insecure above a particular value (say 100) and returns SERVFAIL above a higher point (say 500), it leaves the zone subject to attacker-in- the-middle attacks as if it were unsigned between these values. Thus, validating resolver operators and software implementers SHOULD set the point above which a zone is treated as insecure for certain values of NSEC3 iterations to the same as the point where a validating resolver begins returning SERVFAIL. 5. Operational Considerations This entire document discusses operational considerations with various parameter selections of NSEC3 and NSEC3PARAM fields. 6. IANA Considerations IANA has allocated the following code in the First Come First Served range [RFC 8126] of the "Extended DNS Error Codes" registry within the "Domain Name System (DNS) Parameters" registry: INFO-CODE: 27 Purpose: Unsupported NSEC3 iterations value Reference: RFC 9276 7. References 7.1. Normative References [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC 2119, March 1997, <https://www.rfc-editor.org/info/RFC 2119>. [RFC 4035] Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, "Protocol Modifications for the DNS Security Extensions", RFC 4035, DOI 10.17487/RFC 4035, March 2005, <https://www.rfc-editor.org/info/RFC 4035>. [RFC 4470] Weiler, S. and J. Ihren, "Minimally Covering NSEC Records and DNSSEC On-line Signing", RFC 4470, DOI 10.17487/RFC 4470, April 2006, <https://www.rfc-editor.org/info/RFC 4470>. [RFC 5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS Security (DNSSEC) Hashed Authenticated Denial of Existence", RFC 5155, DOI 10.17487/RFC 5155, March 2008, <https://www.rfc-editor.org/info/RFC 5155>. [RFC 8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC 8174, May 2017, <https://www.rfc-editor.org/info/RFC 8174>. [RFC 8914] Kumari, W., Hunt, E., Arends, R., Hardaker, W., and D. Lawrence, "Extended DNS Errors", RFC 8914, DOI 10.17487/RFC 8914, October 2020, <https://www.rfc-editor.org/info/RFC 8914>. 7.2. Informative References [GPUNSEC3] Wander, M., Schwittmann, L., Boelmann, C., and T. Weis, "GPU-Based NSEC3 Hash Breaking", DOI 10.1109/NCA.2014.27, August 2014, <https://doi.org/10.1109/NCA.2014.27>. [RFC 8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC 8126, June 2017, <https://www.rfc-editor.org/info/RFC 8126>. [RFC 8624] Wouters, P. and O. Sury, "Algorithm Implementation Requirements and Usage Guidance for DNSSEC", RFC 8624, DOI 10.17487/RFC 8624, June 2019, <https://www.rfc-editor.org/info/RFC 8624>. [ZONEENUM] Wang, Z., Xiao, L., and R. Wang, "An efficient DNSSEC zone enumeration algorithm", DOI 10.2495/MIIT130591, April 2014, <https://doi.org/10.2495/MIIT130591>. Appendix A. Deployment Measurements at Time of Publication At the time of publication, setting an upper limit of 100 iterations for treating a zone as insecure is interoperable without significant problems, but at the same time still enables CPU-exhausting DoS attacks. At the time of publication, returning SERVFAIL beyond 500 iterations appears to be interoperable without significant problems. Appendix B. Computational Burdens of Processing NSEC3 Iterations The queries per second (QPS) of authoritative servers will decrease due to computational overhead when processing DNS requests for zones containing higher NSEC3 iteration counts. The table below shows the drop in QPS for various iteration counts. +============+=============================+ | Iterations | QPS [% of 0 Iterations QPS] | +============+=============================+ | 0 | 100% | +------------+-----------------------------+ | 10 | 89% | +------------+-----------------------------+ | 20 | 82% | +------------+-----------------------------+ | 50 | 64% | +------------+-----------------------------+ | 100 | 47% | +------------+-----------------------------+ | 150 | 38% | +------------+-----------------------------+ Table 1: Drop in QPS for Various Iteration Counts Acknowledgments The authors would like to thank the participants in the dns- operations discussion, which took place on mattermost hosted by DNS- OARC. Additionally, the following people contributed text or review comments to this document: * Vladimir Cunat * Tony Finch * Paul Hoffman * Warren Kumari * Alexander Mayrhofer * Matthijs Mekking * Florian Obser * Petr Spacek * Paul Vixie * Tim Wicinski Authors' Addresses Wes Hardaker USC/ISI Email: ietf@hardakers.net Viktor Dukhovni Bloomberg, L.P. Email: ietf-dane@dukhovni.org RFC TOTAL SIZE: 21606 bytes PUBLICATION DATE: Thursday, August 11th, 2022 LEGAL RIGHTS: The IETF Trust (see BCP 78) |