The RFC Archive
 The RFC Archive   RFC 9268   « Jump to any RFC number directly 
 RFC Home
Full RFC Index
Recent RFCs
RFC Standards
Best Current Practice
RFC Errata
1 April RFC



IETF RFC 9268



Last modified on Tuesday, August 30th, 2022

Permanent link to RFC 9268
Search GitHub Wiki for RFC 9268
Show other RFCs mentioning RFC 9268





Internet Engineering Task Force (IETF)                         R. Hinden
Request for Comments: 9268                          Check Point Software
Category: Experimental                                    G. Fairhurst
ISSN: 2070-1721                                   University of Aberdeen
                                                             August 2022


                IPv6 Minimum Path MTU Hop-by-Hop Option

 Abstract

   This document specifies a new IPv6 Hop-by-Hop Option that is used to
   record the Minimum Path MTU (PMTU) along the forward path between a
   source host to a destination host.  The recorded value can then be
   communicated back to the source using the return Path MTU field in
   the Option.

 Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for examination, experimental implementation, and
   evaluation.

   This document defines an Experimental Protocol for the Internet
   community.  This document is a product of the Internet Engineering
   Task Force (IETF).  It represents the consensus of the IETF
   community.  It has received public review and has been approved for
   publication by the Internet Engineering Steering Group (IESG).  Not
   all documents approved by the IESG are candidates for any level of
   Internet Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/RFC 9268.

 Copyright Notice

   Copyright (c) 2022 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Revised BSD License text as described in Section 4.e of the
   Trust Legal Provisions and are provided without warranty as described
   in the Revised BSD License.

 Table of Contents

   1.  Introduction
     1.1.  Example Operation
     1.2.  Use of the IPv6 Hop-by-Hop Options Header
   2.  Motivation and Problem Solved
   3.  Requirements Language
   4.  Applicability Statements
   5.  IPv6 Minimum Path MTU Hop-by-Hop Option
   6.  Router, Host, and Transport Layer Behaviors
     6.1.  Router Behavior
     6.2.  Host Operating System Behavior
     6.3.  Transport Layer Behavior
       6.3.1.  Including the Option in an Outgoing Packet
       6.3.2.  Validation of the Packet that Includes the Option
       6.3.3.  Receiving the Option
       6.3.4.  Using the Rtn-PMTU Field
       6.3.5.  Detecting Path Changes
       6.3.6.  Detection of Dropping Packets that Include the Option
   7.  IANA Considerations
   8.  Security Considerations
     8.1.  Router Option Processing
     8.2.  Network-Layer Host Processing
     8.3.  Validating Use of the Option Data
     8.4.  Direct Use of the Rtn-PMTU Value
     8.5.  Using the Rtn-PMTU Value as a Hint for Probing
     8.6.  Impact of Middleboxes
   9.  Experiment Goals
   10. Implementation Status
   11. References
     11.1.  Normative References
     11.2.  Informative References
   Appendix A.  Examples of Usage
   Acknowledgments
   Authors' Addresses

1.  Introduction

   This document specifies a new IPv6 Hop-by-Hop (HBH) Option to record
   the minimum Maximum Transmission Unit (MTU) along the forward path
   between a source and a destination host.  The source host creates a
   packet with this Option and initializes the Min-PMTU field with the
   value of the MTU for the outbound link that will be used to forward
   the packet towards the destination host.

   At each subsequent hop where the Option is processed, the router
   compares the value of the Min-PMTU field in the Option and the MTU of
   its outgoing link.  If the MTU of the link is less than the Min-PMTU,
   it rewrites the value in the Option Data with the smaller value.
   When the packet arrives at the destination host, the host can send
   the value of the minimum Reported MTU for the path back to the source
   host using the Rtn-PMTU field in the Option.  The source host can
   then use this value as input to the method that sets the Path MTU
   (PMTU) used by upper-layer protocols.

   The IPv6 Minimum Path MTU Hop-by-Hop (MinPMTU HBH) Option is designed
   to work with packet sizes that can be specified in the IPv6 header.
   The maximum packet size that can be specified in an IPv6 header is
   65,535 octets (2^16).

   This method has the potential to complete Path MTU Discovery (PMTUD)
   in a single round-trip time, even over paths that have successive
   links, each with a lower MTU.

   The mechanism defined in this document is focused on unicast; it does
   not describe multicast.  That is left for future work.

1.1.  Example Operation

   The figure below illustrates the operation of the method.  In this
   case, the path between the source host and the destination host
   comprises three links: the source has a link MTU of size MTU-S, the
   link between routers R1 and R2 has an MTU of size 9000 bytes, and the
   final link to the destination has an MTU of size MTU-D.

         +--------+         +----+        +----+         +-------+
         |        |         |    |        |    |         |       |
         | Sender +---------+ R1 +--------+ R2 +-------- + Dest. |
         |        |         |    |        |    |         |       |
         +--------+  MTU-S  +----+  9000B +----+  MTU-D  +-------+

         Figure 1: An Example Path between the Source Host and the
                              Destination Host

   Three scenarios are described:

   *  Scenario 1 considers all links to have a 9000 byte MTU, and the
      method is supported by both routers.  The initial Min-PMTU is not
      modified along the path.  Therefore, the PMTU is 9000 bytes.

   *  Scenario 2 considers the link between R2 and the destination host
      (MTU-D) to have an MTU of 1500 bytes.  This is the smallest MTU.
      Router R2 updates the Min-PMTU to 1500 bytes, and the method
      correctly updates the PMTU to 1500 bytes.  Had there been another
      smaller MTU at a link further along the path that also supports
      the method, the lower MTU would also have been detected.

   *  Scenario 3 considers the case where the router preceding the
      smallest link (R2) does not support the method, and the link to
      the destination host (MTU-D) has an MTU of 1500 bytes.  Therefore,
      router R2 does not update the Min-PMTU to 1500 bytes.  The method
      then fails to detect the actual PMTU.

   In Scenarios 2 and 3, a lower PMTU would also fail to be detected in
   the case where PMTUD had been used and an ICMPv6 Packet Too Big (PTB)
   message had not been delivered to the sender [RFC 8201].

   These scenarios are summarized in the table below.  "H" in R1 and/or
   R2 columns means the router understands the MinPMTU HBH Option.

   +===+========+========+====+====+==========+=======================+
   |   | MTU-S  | MTU-D  | R1 | R2 | Rec PMTU | Note                  |
   +===+========+========+====+====+==========+=======================+
   | 1 | 9000 B | 9000 B | H  | H  | 9000 B   | Endpoints attempt to  |
   |   |        |        |    |    |          | use a 9000 B PMTU.    |
   +---+--------+--------+----+----+----------+-----------------------+
   | 2 | 9000 B | 1500 B | H  | H  | 1500 B   | Endpoints attempt to  |
   |   |        |        |    |    |          | use a 1500 B PMTU.    |
   +---+--------+--------+----+----+----------+-----------------------+
   | 3 | 9000 B | 1500 B | H  | -  | 9000 B   | Endpoints attempt to  |
   |   |        |        |    |    |          | use a 9000 B PMTU but |
   |   |        |        |    |    |          | need to implement a   |
   |   |        |        |    |    |          | method to fall back   |
   |   |        |        |    |    |          | to discover and use a |
   |   |        |        |    |    |          | 1500 B PMTU.          |
   +---+--------+--------+----+----+----------+-----------------------+

     Table 1: Three Scenarios That Arise from Using the Path Shown in
                                 Figure 1

1.2.  Use of the IPv6 Hop-by-Hop Options Header

   As specified in [RFC 8200], IPv6 allows nodes to optionally process
   the Hop-by-Hop header.  Specifically, from Section 4 of [RFC 8200]:

   |  The Hop-by-Hop Options header is not inserted or deleted, but may
   |  be examined or processed by any node along a packet's delivery
   |  path, until the packet reaches the node (or each of the set of
   |  nodes, in the case of multicast) identified in the Destination
   |  Address field of the IPv6 header.  The Hop-by-Hop Options header,
   |  when present, must immediately follow the IPv6 header.  Its
   |  presence is indicated by the value zero in the Next Header field
   |  of the IPv6 header.
   |  
   |  NOTE: While [RFC 2460] required that all nodes must examine and
   |  process the Hop-by-Hop Options header, it is now expected that
   |  nodes along a packet's delivery path only examine and process the
   |  Hop-by-Hop Options header if explicitly configured to do so.

   The Hop-by-Hop Option defined in this document is designed to take
   advantage of this property of how Hop-by-Hop Options are processed.
   Nodes that do not support this Option SHOULD ignore them.  This can
   mean that the Min-PMTU value does not account for all links along a
   path.

2.  Motivation and Problem Solved

   The current state of Path MTU Discovery on the Internet is
   problematic.  The mechanisms defined in [RFC 8201] are known to not
   work well in all environments.  It fails to work in various cases,
   including when nodes in the middle of the network do not send ICMPv6
   PTB messages or rate-limited ICMPv6 messages or do not have a return
   path to the source host.  This results in many transport-layer
   connections being configured to use smaller packets (e.g., 1280
   bytes) by default and makes it difficult to take advantage of paths
   with a larger PMTU where they do exist.  Applications that send large
   packets are forced to use IPv6 fragmentation [RFC 8200], which can
   reduce the reliability of Internet communication [RFC 8900].

   Encapsulations and network-layer tunnels further reduce the payload
   size available for a transport protocol to use.  Also, some use cases
   increase packet overhead, for example, Network Virtualization Using
   Generic Routing Encapsulation (NVGRE) [RFC 7637] encapsulates Layer 2
   (L2) packets in an outer IP header and does not allow IP
   fragmentation.

   Sending larger packets can improve host performance, e.g., avoiding
   limits to packet processing by the packet rate.  An example of this
   is how the packet-per-second rate required to reach wire speed on a
   10G link with 1280 byte packets is about 977K packets per second
   (pps) vs. 139K pps for 9000 byte packets.

   The purpose of this document is to improve the situation by defining
   a mechanism that does not rely on reception of ICMPv6 PTB messages
   from nodes in the middle of the network.  Instead, this provides
   information to the destination host about the Minimum Path MTU and
   sends this information back to the source host.  This is expected to
   work better than the current mechanisms based on [RFC 8201].

   A similar mechanism was proposed in 1988 for IPv4 in [RFC 1063] by
   Jeff Mogul, C.  Kent, Craig Partridge, and Keith McCloghire.  It was
   later obsoleted in 1990 by [RFC 1191], which is the current deployed
   approach to Path MTU Discovery.  In contrast, the method described in
   this document uses the Hop-by-Hop Option of IPv6.  It does not
   replace PMTUD [RFC 8201], Packetization Layer Path MTU Discovery
   (PLPMTUD) [RFC 4821], or Datagram Packetization Layer PMTU Discovery
   (DPLPMTUD) [RFC 8899] but rather is designed to compliment these
   methods.

3.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC 2119] [RFC 8174] when, and only when, they appear in all
   capitals, as shown here.

4.  Applicability Statements

   The Path MTU Option is designed for environments where there is
   control over the hosts and nodes that connect them and where there is
   more than one MTU size in use, for example, in data centers and on
   paths between data centers to allow hosts to better take advantage of
   a path that is able to support a large PMTU.

   The design of the Option is so sufficiently simple that it can be
   executed on a router's fast path.  A successful experiment depends on
   both implementation by host and router vendors and deployment by
   operators.  The contained use case of connections within and between
   data centers could be a driver for deployment.

   The method could also be useful in other environments, including the
   general Internet, and offers an advantage when this Hop-by-Hop Option
   is supported on all paths.  The method is more robust when used to
   probe the path using packets that do not carry application data and
   when also paired with a method like Packetization Layer PMTUD
   [RFC 4821] or Datagram Packetization Layer PMTU Discovery (DPLPMTUD)
   [RFC 8899].

5.  IPv6 Minimum Path MTU Hop-by-Hop Option

   The Minimum Path MTU Hop-by-Hop Option has the following format:

          Option    Option    Option
           Type    Data Len   Data
         +--------+--------+--------+--------+---------+-------+-+
         |BBCTTTTT|00000100|     Min-PMTU    |     Rtn-PMTU    |R|
         +--------+--------+--------+--------+---------+-------+-+

         Figure 2: Format of the Minimum Path MTU Hop-by-Hop Option

   Option Type (see Section 4.2 of [RFC 8200]):

     BB     00   Skip over this Option and continue processing.

     C       1   Option Data can change en route to the packet's final
                 destination.

     TTTTT 10000 Option Type assigned from IANA [IANA-HBH].

     Length:  4  The size of the value field in Option Data
                 field supports PMTU values from 0 to 65,534
                 octets, the maximum size represented by the
                 Path MTU Option.


     Min-PMTU: n 16-bits.  The minimum MTU recorded along the path
                 in octets, reflecting the smallest link MTU that
                 the packet experienced along the path.
                 A value less than the IPv6 minimum link
                 MTU [RFC 8200] MUST be ignored.

     Rtn-PMTU: n 15-bits.  The returned Path MTU field, carrying the 15
                 most significant bits of the latest received Min-PMTU
                 field for the forward path.  The value zero means that
                 no Reported MTU is being returned.

     R        n  1-bit.  R-Flag.   Set by the source to signal that
                 the destination host should include the received
                 Rtn-PMTU field updated by the reported Min-PMTU value
                 when the destination host is to send a PMTU Option back
                 to the source host.

   NOTE: The encoding of the final two octets (Rtn-PMTU and R-Flag)
   could be implemented by a mask of the latest received Min-PMTU value
   with 0xFFFE, discarding the right-most bit and then performing a
   logical 'OR' with the R-Flag value of the sender.  This encoding fits
   in the minimum-sized Hop-by-Hop Option header.

6.  Router, Host, and Transport Layer Behaviors

6.1.  Router Behavior

   Routers that are not configured to support Hop-by-Hop Options are not
   expected to examine or process the contents of this Option [RFC 8200].

   Routers that support Hop-by-Hop Options but are not configured to
   support this Option SHOULD skip over this Option and continue to
   process the header [RFC 8200].

   Routers that support this Option MUST compare the value of the Min-
   PMTU field with the MTU configured for the outgoing link.  If the MTU
   of the outgoing link is less than the Min-PMTU, the router rewrites
   the Min-PMTU in the Option to use the smaller value.  (The router
   processing is performed without checking the valid range of the Min-
   PMTU or the Rtn-PMTU fields.)

   A router MUST ignore and MUST NOT change the Rtn-PMTU field or the
   R-Flag in the Option.

6.2.  Host Operating System Behavior

   The PMTU entry associated with the destination in the host's
   destination cache [RFC 4861] SHOULD be updated after detecting a
   change using the IPv6 Minimum Path MTU Hop-by-Hop Option.  This
   cached value can be used by other flows that share the host's
   destination cache.

   The value in the host destination cache SHOULD be used by PLPMTUD to
   select an initial PMTU for a flow.  The cached PMTU is only increased
   by PLPMTUD when the Packetization Layer determines the path actually
   supports a larger PMTU [RFC 4821] [RFC 8899].

   When requested to send an IPv6 packet with the MinPMTU HBH Option,
   the source host includes the Option in an outgoing packet.  The
   source host MUST fill the Min-PMTU field with the MTU configured for
   the link over which it will send the packet on the next hop towards
   the destination host.

   When a host includes the Option in a packet it sends, the host SHOULD
   set the Rtn-PMTU field to the previously cached value of the received
   Minimum Path MTU for the flow in the Rtn-PMTU field (see
   Section 6.3.3).  If this value is not set (for example, because there
   is no cached reported Min-PMTU value), the Rtn-PMTU field value MUST
   be set to zero.

   The source host MAY request the destination host to return the
   reported Min-PMTU value by setting the R-Flag in the Option of an
   outgoing packet.  The R-Flag SHOULD NOT be set when the MinPMTU HBH
   Option was sent solely to provide requested feedback on the return
   Path MTU to avoid each response generating another response.

   The destination host controls when to send a packet with this Option
   in response to an R-Flag, as well as which packets to include it in.
   The destination host MAY limit the rate at which it sends these
   packets.

   A destination host only sets the R-Flag if it wishes the source host
   to also return the discovered PMTU value for the path from the
   destination to the source.

   The normal sequence of operation of the R-Flag using the terminology
   from the diagram in Figure 1 is:

   1.  The source sends a probe to the destination.  The sender sets the
       R-Flag.

   2.  The destination responds by sending a probe including the
       received Min-PMTU as the Rtn-PMTU.  A destination that does not
       wish to probe the return path sets the R-Flag to 0.

6.3.  Transport Layer Behavior

   This Hop-by-Hop Option is intended to be used with a Path MTU
   Discovery method.

   PLPMTUD [RFC 8899] uses probe packets for two distinct functions:

   *  Probe packets are used to confirm connectivity.  Such probes can
      be of any size up to the Packetization Layer Path MTU (PLPMTU).
      These probe packets are sent to solicit a response using the path
      to the remote node.  These probe packets can carry the Hop-by-Hop
      PMTU Option, providing the final size of the packet does not
      exceed the current PLPMTU.  After validating that the packet
      originates from the path (Section 4.6.1 of [RFC 8899]), the PLPMTUD
      method can use the reported size from the Hop-by-Hop Option as the
      next search point when it resumes the search algorithm.  (This use
      resembles the use of the PTB_SIZE information in Section 4.6.2 of
      [RFC 8899].)

   *  A second use of probe packets is to explore if a path supports a
      packet size greater than the current PLPMTU.  If this probe packet
      is successfully delivered (as determined by the source host), then
      the PLPMTU is raised to the size of the successful probe.  These
      probe packets do not usually set the Path MTU Hop-by-Hop Option.
      See Section 1.2 of [RFC 8899].  Section 4.1 of [RFC 8899] also
      describes ways that a probe packet can be constructed, depending
      on whether the probe packets carry application data.

   The PMTU Hop-by-Hop Option probe can be sent on packets that include
   application data but needs to be robust to potential loss of the
   packet (i.e., with the possibility that retransmission might be
   needed if the packet is lost).

   Using a PMTU probe on packets that do not carry application data will
   avoid the need for loss recovery if a router on the path drops
   packets that set this Option.  (This avoids the transport needing to
   retransmit a lost packet that includes this Option.)  This is the
   normal default format for both uses of probes.

6.3.1.  Including the Option in an Outgoing Packet

   The upper-layer protocol can request the MinPMTU HBH Option to be
   included in an outgoing IPv6 packet.  A transport protocol (or upper-
   layer protocol) can include this Option only on specific packets used
   to test the path.  This Option does not need to be included in all
   packets belonging to a flow.

   NOTE: Including this Option in a large packet (e.g., one larger than
   the present PMTU) is not likely to be useful, since the large packet
   would itself be dropped by any link along the path with a smaller
   MTU, preventing the Min-PMTU information from reaching the
   destination host.

   Discussion:

   *  In the case of TCP, the Option could be included in a packet that
      carries a TCP segment sent after the connection is established.  A
      segment without data could be used to avoid the need to retransmit
      this data if the probe packet is lost.  The discovered value can
      be used to inform PLPMTUD [RFC 4821].

      NOTE: A TCP SYN can also negotiate the Maximum Segment Size (MSS),
      which acts as an upper limit to the packet size that can be sent
      by a TCP sender.  If this Option were to be included in a TCP SYN,
      it could increase the probability that the SYN segment is lost
      when routers on the path drop packets with this Option (see
      Section 6.3.6), which could have an unwanted impact on the result
      of racing Options [TAPS-ARCH] or feature negotiation.

   *  The use with datagram transport protocols (e.g., UDP) is harder to
      characterize because applications using datagram transports range
      from very short-lived (low data-volume applications) exchanges to
      longer (bulk) exchanges of packets between the source and
      destination hosts [RFC 8085].

   *  Simple-exchange protocols (i.e., low data-volume applications
      [RFC 8085] that only send one or a few packets per transaction)
      might assume that the PMTU is symmetrical.  That is, the PMTU is
      the same in both directions or at least not smaller for the return
      path.  This optimization does not hold when the paths are not
      symmetric.

   *  The MinPMTU HBH Option can be used with ICMPv6 [RFC 4443].  This
      requires a response from the remote node and therefore is
      restricted to use with ICMPv6 echo messages.  The MinPMTU HBH
      Option could provide additional information about the PMTU that
      might be supported by a path.  This could be used as a diagnostic
      tool to measure the PMTU of a path.  As with other uses, the
      actual supported PMTU is only confirmed after receiving a response
      to a subsequent probe of the PMTU size.

   *  A datagram transport can utilize DPLPMTUD [RFC 8899].  For example,
      QUIC (see Section 14.3 of [RFC 9000]) can use DPLPMTUD to determine
      whether the path to a destination will support a desired maximum
      datagram size.  When using the IPv6 MinPMTU HBH Option, the Option
      could be added to an additional QUIC PMTU probe that is of minimal
      size (or one no larger than the currently supported PMTU size).
      Once the return Path MTU value in the MinPMTU HBH Option has been
      learned, DPLPMTUD can be triggered to test for a larger PLPMTU
      using an appropriately sized PLPMTU probe packet (see
      Section 5.3.1 of [RFC 8899]).

   *  The use of this Option with DNS and DNSSEC over UDP is expected to
      work for paths where the PMTU is symmetric.  The DNS server will
      learn the PMTU from the DNS query messages.  If the Rtn-PMTU value
      is smaller, then a large DNSSEC response might be dropped and the
      known problems with PMTUD will then occur.  DNS and DNSSEC over
      transport protocols that can carry the PMTU ought to work.

   *  This method also can be used with anycast to discover the PMTU of
      the path, but the use needs to be aware that the anycast binding
      might change.

6.3.2.  Validation of the Packet that Includes the Option

   An upper-layer protocol (e.g., transport endpoint) using this Option
   needs to provide protection from data injection attacks by off-path
   devices [RFC 8085].  This requires a method to assure that the
   information in the Option Data is provided by a node on the path.
   This validates that the packet forms a part of an existing flow,
   using context available at the upper layer.  For example, a TCP
   connection or UDP application that maintains the related state and
   uses a randomized ephemeral port would provide this basic validation
   to protect from off-path data injection; see Section 5.1 of
   [RFC 8085].  IPsec [RFC 4301] and TLS [RFC 8446] provide greater
   assurance.

   The upper layer discards any received packet when the packet
   validation fails.  When packet validation fails, the upper layer MUST
   also discard the associated Option Data from the MinPMTU HBH Option
   without further processing.

6.3.3.  Receiving the Option

   For a connection-oriented upper-layer protocol, caching of the
   received Min-PMTU could be implemented by saving the value in the
   connection context at the transport layer.  A connectionless upper
   layer (e.g., one using UDP) requires the upper-layer protocol to
   cache the value for each flow it uses.

   A destination host that receives a MinPMTU HBH Option with the R-Flag
   SHOULD include the MinPMTU HBH Option in the next outgoing IPv6
   packet for the corresponding flow.

   A simple mechanism could only include this Option (with the Rtn-PMTU
   field set) the first time this Option is received or when it notifies
   a change in the Minimum Path MTU.  This limits the number of packets,
   including the Option packets, that are sent.  However, this does not
   provide robustness to packet loss or recovery after a sender loses
   state.

   Discussion:

   *  Some upper-layer protocols send packets less frequently than the
      rate at which the host receives packets.  This provides less
      frequent feedback of the received Rtn-PMTU value.  However, a host
      always sends the most recent Rtn-PMTU value.

6.3.4.  Using the Rtn-PMTU Field

   The Rtn-PMTU field provides an indication of the PMTU from on-path
   routers.  It does not necessarily reflect the actual PMTU between the
   source and destination hosts.  Care therefore needs to be exercised
   in using the Rtn-PMTU value.  Specifically:

   *  The actual PMTU can be lower than the Rtn-PMTU value because the
      Min-PMTU field was not updated by a router on the path that did
      not process the Option.

   *  The actual PMTU may be lower than the Rtn-PMTU value because there
      is a Layer 2 device with a lower MTU.

   *  The actual PMTU may be larger than the Rtn-PMTU value because of a
      corrupted, delayed, or misordered response.  A source host MUST
      ignore a Rtn-PMTU value larger than the MTU configured for the
      outgoing link.

   *  The path might have changed between the time when the probe was
      sent and when the Rtn-PMTU value received.

   IPv6 requires that every link in the Internet have an MTU of 1280
   octets or greater.  A node MUST ignore a Rtn-PMTU value less than
   1280 octets [RFC 8200].

   To avoid unintentional dropping of packets that exceed the actual
   PMTU (e.g., Scenario 3 in Section 1.1), the source host can delay
   increasing the PMTU until a probe packet with the size of the Rtn-
   PMTU value has been successfully acknowledged by the upper layer,
   confirming that the path supports the larger PMTU.  This probing
   increases robustness but adds one additional path round-trip time
   before the PMTU is updated.  This use resembles that of PTB messages
   in Section 4.6 of DPLPMTUD [RFC 8899] (with the important difference
   being that a PTB message can only seek to lower the PMTU, whereas
   this Option could trigger a probe packet to seek to increase the
   PMTU).

   Section 5.2 of [RFC 8201] provides guidance on the caching of PMTU
   information and also the relation to IPv6 flow labels.
   Implementations should consider the impact of Equal-Cost Multipath
   (ECMP) [RFC 6438], specifically, whether a PMTU ought to be maintained
   for each transport endpoint or for each network address.

6.3.5.  Detecting Path Changes

   Path characteristics can change, and the actual PMTU could increase
   or decrease over time, for instance, following a path change when
   packets are forwarded over a link with a different MTU than that
   previously used.  To bound the delay in discovering an increase in
   the actual PMTU, a host with a link MTU larger than the current PMTU
   SHOULD periodically send the MinPMTU HBH Option with the R-bit set.
   DPLPMTUD provides recommendations concerning how this could be
   implemented (see Section 5.3 of [RFC 8899]).  Since the Option
   consumes less capacity than a full-sized probe packet, there can be
   an advantage in using this to detect a change in the path
   characteristics.

6.3.6.  Detection of Dropping Packets that Include the Option

   There is evidence that some middleboxes drop packets that include
   Hop-by-Hop Options.  For example, a firewall might drop a packet that
   carries an unknown extension header or Option.  This practice is
   expected to decrease as an Option becomes more widely used.  It could
   result in the generation of an ICMPv6 message that indicates the
   problem.  This could be used to (temporarily) suspend use of this
   Option.

   A middlebox that silently discards a packet with this Option results
   in the dropping of any packet using the Option.  This dropping can be
   avoided by appropriate configuration in a controlled environment,
   such as within a data center, but it needs to be considered for
   Internet usage.  Section 6.2 recommends that this Option is not used
   on packets where loss might adversely impact performance.

7.  IANA Considerations

   IANA has registered an IPv6 Hop-by-Hop Option type in the
   "Destination Options and Hop-by-Hop Options" registry within the
   "Internet Protocol Version 6 (IPv6) Parameters" registry group
   [IANA-HBH].  This assignment is shown in Section 5.

8.  Security Considerations

   This section discusses the security considerations.  It first reviews
   router Option processing.  It then reviews host processing when
   receiving this Option at the network layer.  It then considers two
   ways in which the Option Data can be processed, followed by two
   approaches for using the Option Data.  Finally, it discusses
   middlebox implications related to use in the general Internet.

8.1.  Router Option Processing

   This Option shares the characteristics of all other IPv6 Hop-by-Hop
   Options, in that, if not supported at line rate, it could be used to
   degrade the performance of a router.  This Option, while simple, is
   no different than other uses of IPv6 Hop-by-Hop Options.

   It is common for routers to ignore the Hop-by-Hop Option header or to
   drop packets containing a Hop-by-Hop Option header.  Routers
   implementing IPv6 according to [RFC 8200] only examine and process the
   Hop-by-Hop Options header if explicitly configured to do so.

8.2.  Network-Layer Host Processing

   A malicious attacker can forge a packet directed at a host that
   carries the MinPMTU HBH Option.  By design, the fields of this IP
   Option can be modified by the network.

   For comparison, the ICMPv6 PTB message used in Path MTU Discovery
   [RFC 8201] and the source host have an inherent trust relationship
   with the destination host including this Option.  This trust
   relationship can be used to help verify the Option.  ICMPv6 PTB
   messages are sent from any router on the path to the destination
   host.  The source host has no prior knowledge of these routers
   (except for the first hop router).

   Reception of this packet will require processing as the network stack
   parses the packet before the packet is delivered to the upper-layer
   protocol.  This network-layer Option processing is normally completed
   before any upper-layer protocol delivery checks are performed.

   The network layer does not normally have sufficient information to
   validate that the packet carrying an Option originated from the
   destination (or an on-path node).  It also does not typically have
   sufficient context to demultiplex the packet to identify the related
   transport flow.  This can mean that any changes resulting from
   reception of the Option applies to all flows between a pair of
   endpoints.

   These considerations are no different than other uses of Hop-by-Hop
   Options, and this is the use case for PMTUD.  The following section
   describes a mitigation for this attack.

8.3.  Validating Use of the Option Data

   Transport protocols should be designed to provide protection from
   data injection attacks by off-path devices, and mechanisms should be
   described in the Security Considerations section for each transport
   specification (see Section 5.1 of "UDP Usage Guidelines" [RFC 8085]).
   For example, a TCP or UDP application that maintains the related
   state and uses a randomized ephemeral port would provide basic
   protection.  TLS [RFC 8446] or IPsec [RFC 4301] provide cryptographic
   authentication.  An upper-layer protocol that validates each received
   packet discards any packet when this validation fails.  In this case,
   the host MUST also discard the associated Option Data from the
   MinPMTU HBH Option without further processing (Section 6.3).

   A network node on the path has visibility of all packets it forwards.
   By observing the network packet payload, the node might be able to
   construct a packet that might be validated by the destination host.
   Such a node would also be able to drop or limit the flow in other
   ways that could be potentially more disruptive.  Authenticating the
   packet, for example, using IPsec [RFC 4301] or TLS [RFC 8446] mitigates
   this attack.  Note that the authentication style of the
   Authentication Header (AH) [RFC 4302], while authenticating the
   payload and outer IPv6 header, does not check Hop-by-Hop Options that
   change on route.

8.4.  Direct Use of the Rtn-PMTU Value

   The simplest way to utilize the Rtn-PMTU value is to directly use
   this to update the PMTU.  This approach results in a set of security
   issues when the Option carries malicious data:

   *  A direct update of the PMTU using the Rtn-PMTU value could result
      in an attacker inflating or reducing the size of the host PMTU for
      the destination.  Forcing a reduction in the PMTU can decrease the
      efficiency of network use, might increase the number of packets/
      fragments required to send the same volume of payload data, and
      can prevent sending an unfragmented datagram larger than the PMTU.
      Increasing the PMTU can result in a path silently dropping packets
      (described as a black hole in [RFC 8899]) when the source host
      sends packets larger than the actual PMTU.  This persists until
      the PMTU is next updated.

   *  The method can be used to solicit a response from the destination
      host.  A malicious attacker could forge a packet that causes the
      destination to add the Option to a packet sent to the source host.
      A forged value of Rtn-PMTU in the Option Data might also impact
      the remote endpoint, as described in the previous bullet.  This
      persists until a valid MinPMTU HBH Option is received.  This
      attack could be mitigated by limiting the sending of the MinPMTU
      HBH Option in reply to incoming packets that carry the Option.

8.5.  Using the Rtn-PMTU Value as a Hint for Probing

   Another way to utilize the Rtn-PMTU value is to indirectly trigger a
   probe to determine if the path supports a PMTU of size Rtn-PMTU.
   This approach needs context for the flow and hence assumes an upper-
   layer protocol that validates the packet that carries the Option (see
   Section 8.3).  This is the case when used in combination with
   DPLPMTUD [RFC 8899].  A set of security considerations result when an
   Option carries malicious data:

   *  If the forged packet carries a validated Option with a non-zero
      Rtn-PMTU field, the upper-layer protocol could utilize the
      information in the Rtn-PMTU field.  A Rtn-PMTU larger than the
      current PMTU can trigger a probe for a new size.

   *  If the forged packet carries a non-zero Min-PMTU field, the upper-
      layer protocol would change the cached information about the path
      from the source.  The cached information at the destination host
      will be overwritten when the host receives another packet that
      includes a MinPMTU HBH Option corresponding to the flow.

   *  Processing of the Option could cause a destination host to add the
      MinPMTU HBH Option to a packet sent to the source host.  This
      Option will carry a Rtn-PMTU value that could have been updated by
      the forged packet.  The impact of the source host receiving this
      resembles that discussed previously.

8.6.  Impact of Middleboxes

   There is evidence that some middleboxes drop packets that include
   Hop-by-Hop Options.  For example, a firewall might drop a packet that
   carries an unknown extension header or Option.  This practice is
   expected to decrease as the Option becomes more widely used.  Methods
   to address this are discussed in Section 6.3.6.

   When a forged packet causes a packet that includes the MinPMTU HBH
   Option to be sent and the return path does not forward packets with
   this Option, the packet will be dropped (see Section 6.3.6).  This
   attack is mitigated by validating the Option Data before use and by
   limiting the rate of responses generated.  An upper layer could
   further mitigate the impact by responding to an R-Flag by including
   the Option in a packet that does not carry application data.

9.  Experiment Goals

   This section describes the experimental goals of this specification.

   A successful deployment of the method depends upon several components
   being implemented and deployed:

   *  Support in the sending node (see Section 6.2).  This also requires
      corresponding support in upper-layer protocols (see Section 6.3).

   *  Router support in nodes (see Section 6.1).  The IETF continues to
      provide recommendations on the use of IPv6 Hop-by-Hop Options, for
      example, see Section 2.2.2 of [RFC 9099].  This document does not
      update the way router implementations configure support for Hop-
      by-Hop Options.

   *  Support in the receiving node (see Section 6.3.3).

   Experience from deployment is an expected input to any decision to
   progress this specification from Experimental to IETF Standards
   Track.  Appropriate inputs might include:

   *  reports of implementation experience,

   *  measurements of the number paths where the method can be used, or

   *  measurements showing the benefit realized or the implications of
      using specific methods over specific paths.

10.  Implementation Status

   At the time this document was published, there are two known
   implementations of the Path MTU Hop-by-Hop Option.  These are:

   *  Wireshark dissector.  This is shipping in production in Wireshark
      version 3.2 [WIRESHARK].

   *  A prototype in the open source version of the FD.io Vector Packet
      Processing (VPP) technology [VPP].  At the time this document was
      published, the source code can be found [VPP_SRC].

11.  References

11.1.  Normative References

   [IANA-HBH] IANA, "Destination Options and Hop-by-Hop Options",
              <https://www.iana.org/assignments/ipv6-parameters/>.

   [RFC 2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC 2119, March 1997,
              <https://www.rfc-editor.org/info/RFC 2119>.

   [RFC 8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC 8174,
              May 2017, <https://www.rfc-editor.org/info/RFC 8174>.

   [RFC 8200]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", STD 86, RFC 8200,
              DOI 10.17487/RFC 8200, July 2017,
              <https://www.rfc-editor.org/info/RFC 8200>.

   [RFC 8201]  McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
              "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
              DOI 10.17487/RFC 8201, July 2017,
              <https://www.rfc-editor.org/info/RFC 8201>.

11.2.  Informative References

   [RFC 1063]  Mogul, J., Kent, C., Partridge, C., and K. McCloghrie, "IP
              MTU discovery options", RFC 1063, DOI 10.17487/RFC 1063,
              July 1988, <https://www.rfc-editor.org/info/RFC 1063>.

   [RFC 1191]  Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
              DOI 10.17487/RFC 1191, November 1990,
              <https://www.rfc-editor.org/info/RFC 1191>.

   [RFC 2460]  Deering, S. and R. Hinden, "Internet Protocol, Version 6
              (IPv6) Specification", RFC 2460, DOI 10.17487/RFC 2460,
              December 1998, <https://www.rfc-editor.org/info/RFC 2460>.

   [RFC 4301]  Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, DOI 10.17487/RFC 4301,
              December 2005, <https://www.rfc-editor.org/info/RFC 4301>.

   [RFC 4302]  Kent, S., "IP Authentication Header", RFC 4302,
              DOI 10.17487/RFC 4302, December 2005,
              <https://www.rfc-editor.org/info/RFC 4302>.

   [RFC 4443]  Conta, A., Deering, S., and M. Gupta, Ed., "Internet
              Control Message Protocol (ICMPv6) for the Internet
              Protocol Version 6 (IPv6) Specification", STD 89,
              RFC 4443, DOI 10.17487/RFC 4443, March 2006,
              <https://www.rfc-editor.org/info/RFC 4443>.

   [RFC 4821]  Mathis, M. and J. Heffner, "Packetization Layer Path MTU
              Discovery", RFC 4821, DOI 10.17487/RFC 4821, March 2007,
              <https://www.rfc-editor.org/info/RFC 4821>.

   [RFC 4861]  Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
              "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
              DOI 10.17487/RFC 4861, September 2007,
              <https://www.rfc-editor.org/info/RFC 4861>.

   [RFC 6438]  Carpenter, B. and S. Amante, "Using the IPv6 Flow Label
              for Equal Cost Multipath Routing and Link Aggregation in
              Tunnels", RFC 6438, DOI 10.17487/RFC 6438, November 2011,
              <https://www.rfc-editor.org/info/RFC 6438>.

   [RFC 7637]  Garg, P., Ed. and Y. Wang, Ed., "NVGRE: Network
              Virtualization Using Generic Routing Encapsulation",
              RFC 7637, DOI 10.17487/RFC 7637, September 2015,
              <https://www.rfc-editor.org/info/RFC 7637>.

   [RFC 8085]  Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage
              Guidelines", BCP 145, RFC 8085, DOI 10.17487/RFC 8085,
              March 2017, <https://www.rfc-editor.org/info/RFC 8085>.

   [RFC 8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC 8446, August 2018,
              <https://www.rfc-editor.org/info/RFC 8446>.

   [RFC 8899]  Fairhurst, G., Jones, T., Tüxen, M., Rüngeler, I., and T.
              Völker, "Packetization Layer Path MTU Discovery for
              Datagram Transports", RFC 8899, DOI 10.17487/RFC 8899,
              September 2020, <https://www.rfc-editor.org/info/RFC 8899>.

   [RFC 8900]  Bonica, R., Baker, F., Huston, G., Hinden, R., Troan, O.,
              and F. Gont, "IP Fragmentation Considered Fragile",
              BCP 230, RFC 8900, DOI 10.17487/RFC 8900, September 2020,
              <https://www.rfc-editor.org/info/RFC 8900>.

   [RFC 9000]  Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
              Multiplexed and Secure Transport", RFC 9000,
              DOI 10.17487/RFC 9000, May 2021,
              <https://www.rfc-editor.org/info/RFC 9000>.

   [RFC 9099]  Vyncke, É., Chittimaneni, K., Kaeo, M., and E. Rey,
              "Operational Security Considerations for IPv6 Networks",
              RFC 9099, DOI 10.17487/RFC 9099, August 2021,
              <https://www.rfc-editor.org/info/RFC 9099>.

   [TAPS-ARCH]
              Pauly, T., Ed., Trammell, B., Ed., Brunstrom, A.,
              Fairhurst, G., and C. Perkins, "An Architecture for
              Transport Services", Work in Progress, Internet-Draft,
              draft-ietf-taps-arch-12, June 2022,
              <https://datatracker.ietf.org/doc/bibxml3/draft-ietf-taps-
              arch.xml>.

   [VPP]      FD.io, "VPP/What is VPP?",
              <https://wiki.fd.io/view/VPP/What_is_VPP%3F>.

   [VPP_SRC]  "vpp", commit 21948, ip: HBH MTU recording for IPv6,
              <https://gerrit.fd.io/r/c/vpp/+/21948>.

   [WIRESHARK]
              "Wireshark Network Protocol Analyzer",
              <https://www.wireshark.org>.

Appendix A.  Examples of Usage

   This section provides examples that illustrate a use of the MinPMTU
   HBH Option by a source using DPLPMTUD to discover the PLPMTU
   supported by a path.  They consider a path where the on-path router
   has been configured with an outgoing MTU of d'.  The source starts by
   transmission of packets of size a and then uses DPLPMTUD to seek to
   increase the size in steps resulting in sizes of b, c, d, e, etc.
   (chosen by the search algorithm used by DPLPMTUD).  The search
   algorithm terminates with a PLPMTU that is at least d and is less
   than or equal to d'.

   The first example considers DPLPMTUD without using the MinPMTU HBH
   Option.  In this case, DPLPMTUD searches using a probe packet that
   increases in size.  Probe packets of size e are sent, which are
   larger than the actual PMTU.  In this example, PTB messages are not
   received from the routers, and repeated unsuccessful probes result in
   the search phase completing.  Packets of data are never sent with a
   size larger than the size of the last confirmed probe packet.
   Acknowledgments (ACKs) of data packets are not shown.

     ----Packets of data size a ------------------------------>
     ----Probe size b ---------------------------------------->
      <---------------------------------- ACK of probe --------
     ----Packets of data size b ------------------------------>
     ----Probe size c ---------------------------------------->
      <---------------------------------- ACK of probe --------
     ----Packets of data size c ------------------------------>
     ----Probe size d ---------------------------------------->
      <---------------------------------- ACK of probe --------
     ----Packets of data size d ------------------------------>
      <---------------------------------- ACK of probe --------
     ...
     ----Probe size e --------------X
             X----ICMPv6 PTB d' ----|
     ----Packets of data size d ------------------------------>
     ----Probe size e --------------X (again)
             X----ICMPv6 PTB d' ----|
     ----Packets of data size d ------------------------------>
     ...
     etc. until MaxProbes are unsuccessful and search phase completes.
     ----Packets of data size d ------------------------------>

                                  Figure 3

   The second example considers DPLPMTUD with the MinPMTU HBH Option set
   on a connectivity probe packet.

   The IPv6 Option is sent end to end, and the Min-PMTU is updated by a
   router on the path to d', which is returned in a response that also
   sets the MinPMTU HBH Option.  Upon receiving the Rtn-PMTU value,
   DPLPMTUD immediately sends a probe packet of the target size d'.  If
   the probe packet is confirmed for the path, the PLPMTU is updated,
   allowing the source to use data packets up to size d'.  (The search
   algorithm is allowed to continue to probe to see if the path supports
   a larger size.)  Packets of data are never sent with a size larger
   than the last confirmed probe size d'.

        ----Packets of data size a ------------------------------>
        ----Connectivity probe with MinPMTU-
                                    +--updated to minPMTU=d'----->
         <-----------------ACK with Rtn-PMTU=d'--------------------
        ----Packets of data size a ------------------------------>
        ----Probe size d' --------------------------------------->
         <---------------------------------- ACK of probe ---------
        -----Packets of data size d' ---------------------------->
        Search phase completes.
        -----Packets of data size d' ---------------------------->

                                  Figure 4

   The final example considers DPLPMTUD with the MinPMTU HBH Option set
   on a connectivity probe packet but shows the effect when this
   connectivity probe packet is dropped.

   In this case, the packet with the MinPMTU HBH Option is not received.
   DPLPMTUD searches using probe packets of increasing size, increasing
   the PLPMTU when the probes are confirmed.  An ICMPv6 PTB message is
   received when the probed size exceeds the actual PMTU, indicating a
   PTB_SIZE of d'.  DPLPMTUD immediately sends a probe packet of the
   target size d'.  If the probe packet is confirmed for the path, the
   PLPMTU is updated, allowing the source to use data packets up to size
   d'.  If the ICMPv6 PTB message is not received, the DPLPMTU will be
   the last confirmed probe size, which is d.

        ----Packets of data size a ------------------------------->
        ----Connectivity probe with MinPMTU --------X
        ----Packets of data size a ------------------------------->
        ----Probe size b ----------------------------------------->
         <---------------------------------- ACK of probe --------
        ----Packets of data size b ------------------------------->
        ----Probe size c ----------------------------------------->
         <---------------------------------- ACK of probe --------
        ----Packets of data size c ------------------------------->
        ----Probe size d ----------------------------------------->
         <---------------------------------- ACK of probe --------
        ----Packets of data size d ------------------------------->
        ----Probe size e ------------X
         <--ICMPv6 PTB PTB_SIZE d' --|
        ----Packets of data size d ------------------------------->
        ----Probe size d' using target set by PTB_SIZE ----------->
         <---------------------------------- ACK of probe --------
         Search phase completes.
        ----Packets of data size d' ------------------------------>

                                  Figure 5

   The number of probe rounds depends on the number of steps needed by
   the search algorithm and is typically larger for a larger PMTU.

Acknowledgments

   Helpful comments were received from Tom Herbert, Tom Jones, Fred
   Templin, Ole Troan, Tianran Zhou, Jen Linkova, Brian Carpenter, Peng
   Shuping, Mark Smith, Fernando Gont, Michael Dougherty, Erik Kline,
   and other members of the 6MAN Working Group.

Authors' Addresses

   Robert M. Hinden
   Check Point Software
   959 Skyway Road
   San Carlos, CA 94070
   United States of America
   Email: bob.hinden@gmail.com


   Godred Fairhurst
   University of Aberdeen
   School of Engineering
   Fraser Noble Building
   Aberdeen
   AB24 3UE
   United Kingdom
   Email: gorry@erg.abdn.ac.uk



RFC TOTAL SIZE: 52821 bytes
PUBLICATION DATE: Tuesday, August 30th, 2022
LEGAL RIGHTS: The IETF Trust (see BCP 78)      


RFC-ARCHIVE.ORG

© RFC 9268: The IETF Trust, Tuesday, August 30th, 2022
© the RFC Archive, 2024, RFC-Archive.org
Maintainer: J. Tunnissen

Privacy Statement