The RFC Archive
 The RFC Archive   RFC 8586   « Jump to any RFC number directly 
 RFC Home
Full RFC Index
Recent RFCs
RFC Standards
Best Current Practice
RFC Errata
1 April RFC



IETF RFC 8586



Last modified on Wednesday, April 24th, 2019

Permanent link to RFC 8586
Search GitHub Wiki for RFC 8586
Show other RFCs mentioning RFC 8586







Internet Engineering Task Force (IETF)                          S. Ludin
Request for Comments: 8586                           Akamai Technologies
Category: Standards Track                                M. Nottingham
ISSN: 2070-1721                                                   Fastly
                                                             N. Sullivan
                                                              Cloudflare
                                                              April 2019


           Loop Detection in Content Delivery Networks (CDNs)

 Abstract

   This document defines the CDN-Loop request header field for HTTP.
   CDN-Loop addresses an operational need that occurs when an HTTP
   request is intentionally forwarded between Content Delivery Networks
   (CDNs), but is then accidentally or maliciously re-routed back into
   the original CDN causing a non-terminating loop.  The new header
   field can be used to identify the error and terminate the loop.

 Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/RFC 8586.

 Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.



Ludin, et al.                Standards Track                 PAGE 1 top


RFC 8586 CDN Loop Detection April 2019 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Relationship to Via . . . . . . . . . . . . . . . . . . . 2 1.2. Conventions and Definitions . . . . . . . . . . . . . . . 3 2. The CDN-Loop Request Header Field . . . . . . . . . . . . . . 3 3. Security Considerations . . . . . . . . . . . . . . . . . . . 4 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 5 5. References . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1. Normative References . . . . . . . . . . . . . . . . . . 5 5.2. Informative References . . . . . . . . . . . . . . . . . 6 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 6 1. Introduction In modern deployments of HTTP servers, it is common to interpose Content Delivery Networks (CDNs) in front of origin servers to improve latency perceived by end users, reduce operational costs, and improve scalability and reliability of services. Often, more than one CDN is in use by a given origin. This happens for a variety of reasons, such as cost savings, arranging for failover should one CDN have issues, or direct comparison of the CDNs' services. As a result, it is possible for forwarding CDNs to be configured in a "loop" accidentally; because routing is achieved through a combination of DNS and forwarding rules, and site configurations are sometimes complex and managed by several parties. When this happens, it is difficult to debug. Additionally, it sometimes isn't accidental; loops between multiple CDNs can be used as an attack vector (e.g., see [loop-attack]), especially if one CDN unintentionally strips the loop detection headers of another. This specification defines the CDN-Loop HTTP request header field to help detect such attacks and accidents among forwarding CDNs that have implemented it; the header field may not be modified by their customers. 1.1. Relationship to Via HTTP defines the Via header field in Section 5.7.1 of [RFC 7230] for "tracking message forwards, avoiding request loops, and identifying the protocol capabilities of senders along the request/response chain." Ludin, et al. Standards Track PAGE 2 top

RFC 8586 CDN Loop Detection April 2019 In theory, Via could be used to identify these loops. However, in practice it is not used in this fashion, because some HTTP servers use Via for other purposes -- in particular, some implementations disable some HTTP/1.1 features when the Via header is present. 1.2. Conventions and Definitions The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC 2119] [RFC 8174] when, and only when, they appear in all capitals, as shown here. This specification uses the Augmented Backus-Naur Form (ABNF) notation of [RFC 5234] with a list extension, defined in Section 7 of [RFC 7230], that allows for compact definition of comma-separated lists using a '#' operator (similar to how the '*' operator indicates repetition). Additionally, it uses a token (OWS), uri-host, and port rules from [RFC 7230] and the parameter rule from [RFC 7231]. 2. The CDN-Loop Request Header Field The CDN-Loop request header field is intended to help a Content Delivery Network identify when an incoming request has already passed through that CDN's servers to detect loops. CDN-Loop = #cdn-info cdn-info = cdn-id *( OWS ";" OWS parameter ) cdn-id = ( uri-host [ ":" port ] ) / pseudonym pseudonym = token The cdn-id identifies the CDN using either a hostname under its control or a pseudonym. Hostnames are preferred, to help avoid accidental collisions. If a pseudonym is used, unintentional collisions are more likely, and therefore values should be carefully chosen to prevent them; for example, using a well-known value (such as the recognized name of the CDN in question), or a generated value with enough entropy to make collisions unlikely (such as a UUID [RFC 4122]). Optionally, cdn-info can have semicolon-separated key/value parameters to accommodate additional information for the CDN's use. Conforming Content Delivery Networks SHOULD add a cdn-info to this header field in all requests they generate or forward (creating the header field if necessary). Ludin, et al. Standards Track PAGE 3 top

RFC 8586 CDN Loop Detection April 2019 As with all HTTP header fields defined using the "#" rule, the CDN-Loop header field can be added to by comma-separating values, or by creating a new header field with the desired value. For example: GET /image.jpg HTTP/1.1 Host: cdn-customer.example User-Agent: ExampleBrowser/5 CDN-Loop: foo123.foocdn.example, barcdn.example; trace="abcdef" CDN-Loop: AnotherCDN; abc=123; def="456" Note that the pseudonym syntax does not allow whitespace, DQUOTE, or any of the characters "(),/:;<=>?@[]{}". See Section 3.2.6 of [RFC 7230]. Likewise, note the rules for when parameter values need to be quoted in Section 3.1.1 of [RFC 7231]. The effectiveness of this mechanism relies on all intermediaries preserving the header field, since removing (or allowing it to be removed, e.g., by customer configuration) would prevent downstream CDNs from using it to detect looping. In general, unknown header fields are not removed by intermediaries, but there may be a need to add CDN-Loop to an implementation's list of header fields that are not to be removed under any circumstances. The header field SHOULD NOT be used for other purposes. 3. Security Considerations The threat model that the CDN-Loop header field addresses is a customer who is attacking a service provider by configuring a forwarding loop by accident or malice. For it to function, CDNs cannot allow customers to modify or remove it in their configuration (see Section 2). Note that a CDN that allows customers to remove or modify the CDN-Loop header field (i.e., they do not implement this specification) remains an attack vector against both implementing and non-implementing CDNs. A CDN's use of the CDN-Loop header field might expose its presence. For example, if CDN A is configured to forward its requests to CDN B for a given origin, CDN B's presence can be revealed if it behaves differently based upon the presence of the CDN-Loop header field. The CDN-Loop header field can be generated by any client, and therefore its contents cannot be trusted. CDNs who modify their behavior based upon its contents should assure that this does not become an attack vector (e.g., for Denial of Service). Ludin, et al. Standards Track PAGE 4 top

RFC 8586 CDN Loop Detection April 2019 It is possible to sign the contents of the header field (either by putting the signature directly into the field's content or using another header field), but such use is not defined (or required) by this specification. Depending on how it is used, CDN-Loop can expose information about the internal configuration of the CDN; for example, the number of hops inside the CDN, and the hostnames of nodes. 4. IANA Considerations This document registers the "CDN-Loop" header field in the "Permanent Message Header Field Names" registry. o Header Field Name: CDN-Loop o Protocol: http o Status: standard o Reference: RFC 8586 5. References 5.1. Normative References [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC 2119, March 1997, <https://www.rfc-editor.org/info/RFC 2119>. [RFC 5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", STD 68, RFC 5234, DOI 10.17487/RFC 5234, January 2008, <https://www.rfc-editor.org/info/RFC 5234>. [RFC 7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing", RFC 7230, DOI 10.17487/RFC 7230, June 2014, <https://www.rfc-editor.org/info/RFC 7230>. [RFC 7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content", RFC 7231, DOI 10.17487/RFC 7231, June 2014, <https://www.rfc-editor.org/info/RFC 7231>. Ludin, et al. Standards Track PAGE 5 top

RFC 8586 CDN Loop Detection April 2019 [RFC 8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC 8174, May 2017, <https://www.rfc-editor.org/info/RFC 8174>. 5.2. Informative References [loop-attack] Chen, J., Jiang, J., Zheng, X., Duan, H., Liang, J., Li, K., Wan, T., and V. Paxson, "Forwarding-Loop Attacks in Content Delivery Networks", February 2016, <http://www.icir.org/vern/papers/cdn-loops.NDSS16.pdf>. [RFC 4122] Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI 10.17487/RFC 4122, July 2005, <https://www.rfc-editor.org/info/RFC 4122>. Authors' Addresses Stephen Ludin Akamai Technologies Email: sludin@akamai.com Mark Nottingham Fastly Email: mnot@fastly.com Nick Sullivan Cloudflare Email: nick@cloudflare.com Ludin, et al. Standards Track PAGE 6 top

RFC TOTAL SIZE: 12560 bytes PUBLICATION DATE: Wednesday, April 24th, 2019 LEGAL RIGHTS: The IETF Trust (see BCP 78)


RFC-ARCHIVE.ORG

© RFC 8586: The IETF Trust, Wednesday, April 24th, 2019
© the RFC Archive, 2024, RFC-Archive.org
Maintainer: J. Tunnissen

Privacy Statement