The RFC Archive
 The RFC Archive   RFC 8274   « Jump to any RFC number directly 
 RFC Home
Full RFC Index
Recent RFCs
RFC Standards
Best Current Practice
RFC Errata
1 April RFC



IETF RFC 8274



Last modified on Monday, November 20th, 2017

Permanent link to RFC 8274
Search GitHub Wiki for RFC 8274
Show other RFCs mentioning RFC 8274







Internet Engineering Task Force (IETF)                     P. Kampanakis
Request for Comments: 8274                                 Cisco Systems
Category: Informational                                      M. Suzuki
ISSN: 2070-1721                                                     NICT
                                                           November 2017


       Incident Object Description Exchange Format Usage Guidance

 Abstract

   The Incident Object Description Exchange Format (IODEF) v2 (RFC 7970)
   defines a data representation that provides a framework for sharing
   information about computer security incidents commonly exchanged by
   Computer Security Incident Response Teams (CSIRTs).  Since the IODEF
   model includes a wealth of available options that can be used to
   describe a security incident or issue, it can be challenging for
   security practitioners to develop tools that leverage IODEF for
   incident sharing.  This document provides guidelines for IODEF
   implementers.  It addresses how common security indicators can be
   represented in IODEF and provides use cases of how IODEF is being
   used.  This document aims to make IODEF's adoption by vendors easier
   and to encourage faster and wider adoption of the model by CSIRTs
   around the world.

 Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/RFC 8274.











Kampanakis & Suzuki           Informational                  PAGE 1 top


RFC 8274 IODEF Guidance November 2017 Copyright Notice Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. Implementation and Use Strategy . . . . . . . . . . . . . . . 3 3.1. Minimal IODEF Document . . . . . . . . . . . . . . . . . 3 3.2. Information Represented . . . . . . . . . . . . . . . . . 4 3.3. IODEF Classes . . . . . . . . . . . . . . . . . . . . . . 5 4. IODEF Usage Considerations . . . . . . . . . . . . . . . . . 6 4.1. External References . . . . . . . . . . . . . . . . . . . 6 4.2. Extensions . . . . . . . . . . . . . . . . . . . . . . . 6 4.3. Indicator Predicate Logic . . . . . . . . . . . . . . . . 7 4.4. Disclosure Level . . . . . . . . . . . . . . . . . . . . 7 5. IODEF Uses . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.1. Implementations . . . . . . . . . . . . . . . . . . . . . 8 5.2. Inter-vendor and Service Provider Exercise . . . . . . . 8 5.3. Use Cases . . . . . . . . . . . . . . . . . . . . . . . . 12 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12 7. Security Considerations . . . . . . . . . . . . . . . . . . . 12 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 13 8.1. Normative References . . . . . . . . . . . . . . . . . . 13 8.2. Informative References . . . . . . . . . . . . . . . . . 13 Appendix A. Indicator Predicate Logic Examples . . . . . . . . . 14 Appendix B. Inter-vendor and Service Provider Exercise Examples 16 B.1. Malware Delivery URL . . . . . . . . . . . . . . . . . . 16 B.2. DDoS . . . . . . . . . . . . . . . . . . . . . . . . . . 17 B.3. Spear Phishing . . . . . . . . . . . . . . . . . . . . . 20 B.4. Malware . . . . . . . . . . . . . . . . . . . . . . . . . 24 B.5. IoT Malware . . . . . . . . . . . . . . . . . . . . . . . 30 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 33 Kampanakis & Suzuki Informational PAGE 2 top

RFC 8274 IODEF Guidance November 2017 1. Introduction The Incident Object Description Exchange Format (IODEF) v2 [RFC 7970] defines a data representation that provides a framework for sharing computer security incident information commonly exchanged by Computer Security Incident Response Teams (CSIRTs). The IODEF data model consists of multiple classes and data types that are defined in the IODEF XML schema. The IODEF schema was designed to describe all the possible fields needed in a security incident exchange. Thus, IODEF contains a plethora of data constructs that could make it hard for IODEF implementers to decide which are important. Additionally, in the IODEF schema, there exist multiple fields and classes that do not necessarily need to be used in every possible data exchange. Moreover, some IODEF classes are useful only in rare circumstances. This document tries to address these concerns. It also presents how common security indicators can be represented in IODEF, it points out the most important IODEF classes for an implementer and describes other ones that are not as important, and it presents some common pitfalls for IODEF implementers and how to address them. The end goal of this document is to make IODEF's use by vendors easier and to encourage wider adoption of the model by CSIRTs around the world. Section 3 discusses the recommended classes and how an IODEF implementer should choose the classes to implement. Section 4 presents common considerations a practitioner will come across and how to address them. Section 5 goes over some common uses of IODEF. 2. Terminology The terminology used in this document is defined in [RFC 7970]. 3. Implementation and Use Strategy It is important for IODEF implementers to distinguish how the IODEF classes will be used in incident information exchanges. It is also important to understand the most common IODEF classes that describe common security incidents or indicators. This section describes the most important classes and factors an IODEF practitioner should take into consideration before using IODEF or designing an implementation. 3.1. Minimal IODEF Document An IODEF document must include at least an Incident class, an xml:lang attribute that defines the supported language, and the IODEF version attribute. An Incident must contain a purpose attribute and three mandatory-to-implement elements. These elements are Kampanakis & Suzuki Informational PAGE 3 top

RFC 8274 IODEF Guidance November 2017 GenerationTime class (which describes the time of the incident), an IncidentID class, and at least one Contact class. The structure of the minimal IODEF-Document class is shown in Figure 1. +---------------+ +--------------+ |IODEF-Document | | Incident | +---------------+ +--------------+ +--------------+ |STRING version |<>--{1..*}--| ENUM purpose |<>---------| IncidentID | |ENUM xml:lang | | | +--------------+ | | | | | STRING name | +---------------+ | | +--------------+ | | | |<>---------[GenerationTime] | | | | +--------------+ | |<>-{1..*}--[ Contact | +--------------+ +--------------+ | ENUM role | | ENUM type | +--------------+ Figure 1: Minimal IODEF-Document Class The IncidentID class must contain at least a name attribute. In turn, the Contact class requires the type and role attributes, but no elements are required by the IODEF v2 specification. Nevertheless, at least one of the elements in the Contact class, such as an Email class, should be implemented so that the IODEF document is useful. Section 7.1 of [RFC 7970] presents a minimal IODEF document with only the mandatory classes and attributes. Implementers can also refer to Section 7 of [RFC 7970] and Appendix B of this document for examples of documents that are IODEF v2. 3.2. Information Represented There is no need for a practitioner to use or implement IODEF classes and fields other than the minimal ones (see Section 3.1) and the ones necessary for her use cases. The implementer should carefully look into the schema and decide which classes to implement (or not). For example, if we have Distributed Denial of Service (DDoS) as a potential use case, then the Flow class and its included information are the most important classes to use. The Flow class describes information related to the attacker and victim hosts, which could help automated filtering or sinkhole operations. Kampanakis & Suzuki Informational PAGE 4 top

RFC 8274 IODEF Guidance November 2017 Another potential use case is malware command and control (C2). After modern malware infects a device, it usually proceeds to connect to one or more C2 servers to receive instructions from its master and potentially exfiltrate information. To protect against such activity, it is important to interrupt the C2 communication by filtering the activity. IODEF can describe C2 activities using the Flow and the ServiceName classes. For use cases where indicators need to be described, the IndicatorData class will be implemented instead of the EventData class. In summary, an implementer should identify the use cases and find the classes that are necessary to support in IODEF v2. Implementing and parsing all IODEF classes can be cumbersome, in some occasions, and unnecessary. Other external schemata can also be used in IODEF to describe incidents or indicators. External schemata should be parsed accordingly only if the implementer's IODEF use cases require external schema information. But even when an IODEF implementation cannot parse an external schema, the IODEF report can still be valuable to an incident response team. The information can also be useful when shared further with content consumers that are able to parse this information. IODEF supports multiple language translations of free-form, ML_STRING text in all classes [RFC 7970]. That way, text in Description elements can be translated to different languages by using a translation identifier in the class. Implementers should be able to parse iodef:MLStringType classes and extract only the information relevant to languages of interest. 3.3. IODEF Classes [RFC 7970] contains classes that can describe attack Methods, Events, Incidents, Indicators, how they were discovered, and the Assessment of the repercussions for the victim. It is important for IODEF users to know the distinction between these classes in order to decide which ones fulfill their use cases. An IndicatorData class depicts a threat indicator or observable that describe a threat that resulted in an attempted attack. For example, we could see an attack happening (described in the IndicatorData), but it might have been prevented and not have resulted in an incident or security event. On the other hand, an EventData class usually describes a security event and can be considered a report of something that took place. Kampanakis & Suzuki Informational PAGE 5 top

RFC 8274 IODEF Guidance November 2017 Classes like Discovery, Assessment, Method, and RecoveryTime are used in conjunction with EventData as they relate to the incident report described in the EventData. The RelatedActivity class can reference an incident, an indicator, or other related threat activity. While deciding what classes are important for the needed use cases, IODEF users should carefully evaluate the necessary classes and how these are used in order to avoid unnecessary work. For example, if we want to only describe indicators in IODEF, the implementation of Method or Assessment might not be important. 4. IODEF Usage Considerations Implementers need to consider some common, standardized options for their IODEF use strategy. 4.1. External References The IODEF format includes the Reference class used for externally defined information, such as a vulnerability, Intrusion Detection System (IDS) alert, malware sample, advisory, or attack technique. To facilitate the exchange of information, the Reference class was extended to the enumeration reference format [RFC 7495]. The enumeration reference format specifies a means to use external enumeration specifications (e.g., Common Vulnerabilities and Exposures (CVE)) that could define an enumeration format, specific enumeration values, or both. As external enumerations can vary greatly, implementers should only support the ones expected to describe their specific use cases. 4.2. Extensions The IODEF data model [RFC 7970] is extensible. Many attributes with enumerated values can be extended using the "ext-*" prefix. Additional classes can also be defined by using the AdditionalData and RecordItem classes. An extension to the AdditionalData class for reporting phishing emails is defined in [RFC 5901]. Information about extending IODEF class attributes and enumerated values can be found in Section 5 of [RFC 7970]. Additionally, IODEF can import existing schemata by using an extension framework defined in [RFC 7203]. The framework enables IODEF users to embed XML data inside an IODEF document using external schemata or structures defined by external specifications. Examples include CVE, Common Vulnerability Reporting Framework (CVRF), and Open Vulnerability and Assessment Language (OVAL). [RFC 7203] enhances the IODEF capabilities without further extending the data model. Kampanakis & Suzuki Informational PAGE 6 top

RFC 8274 IODEF Guidance November 2017 IODEF implementers should not use their own IODEF extensions unless data cannot be represented using existing standards or unless importing them in an IODEF document as defined in [RFC 7203] is not a suitable option. 4.3. Indicator Predicate Logic An IODEF document [RFC 7970] can describe incident reports and indicators. The Indicator class can include references to other indicators, observables, and more classes that contain details about the indicator. When describing security indicators, it is often common to need to group them together in order to form a group of indicators that constitute a security threat. For example, a botnet might have multiple command and control servers. For that reason, IODEF v2 introduced the IndicatorExpression class, which is used to add the indicator predicate logic when grouping more than one indicator or observable. Implementations must be able to parse and apply the Boolean logic offered by an IndicatorExpression in order to evaluate the existence of an indicator. As explained in Section 3.29.5 of [RFC 7970], the IndicatorExpression element operator defines the operator applied to all the child elements of the IndicatorExpression. If no operator is defined, "and" should be assumed. IndicatorExpressions can also be nested together. Child IndicatorExpressions should be treated as child elements of their parent, and they should be evaluated first before being evaluated with the operator of their parent. Users can refer to Appendix A for example uses of the IndicatorExpressions in an IODEF v2. 4.4. Disclosure Level Access to information in IODEF documents should be tightly locked since the content may be confidential. IODEF has a common attribute, called "restriction", which indicates the disclosure guideline to which the sender expects the recipient to adhere to for the information represented in the class and its children. That way, the sender can express the level of disclosure for each component of an IODEF document. Appropriate external measures could be implemented based on the restriction level. One example is when Real-time Inter- network Defense (RID) [RFC 6545] is used to transfer the IODEF documents, it can provide policy guidelines for handling IODEF documents by using the RIDPolicy class. The enforcement of the disclosure guidelines is out of scope for IODEF. The recipient of the IODEF document needs to follow the guidelines, but these guidelines themselves do not provide any Kampanakis & Suzuki Informational PAGE 7 top

RFC 8274 IODEF Guidance November 2017 enforcement measures. For that purpose, implementers should consider appropriate privacy control measures, technical or operational, for their implementation. 5. IODEF Uses IODEF is currently used by various organizations in order to represent security incidents and share incident and threat information between security operations organizations. 5.1. Implementations In order to use IODEF, tools like IODEF parsers are necessary. [RFC 8134] describes a set of IODEF implementations and uses by various vendors and Computer Emergency Readiness Team (CERT) organizations. The document does not specify any particular mandatory-to-implement (MTI) IODEF classes but provides a list of real-world uses. Perl and Python modules (XML::IODEF, Iodef::Pb, iodeflib) are some examples. Moreover, implementers are encouraged to refer to Section 7 of [RFC 8134] for practical IODEF usage guidelines. On the other hand, [IODEF_IMP] includes various vendor incident reporting products that can consume and export in IODEF format. 5.2. Inter-vendor and Service Provider Exercise As an interoperability exercise, a limited number of vendors organized and executed exchanges of threat indicators in IODEF in 2013. The transport protocol used was RID. The threat information shared included indicators from DDoS attacks as well as malware incidents and spear phishing that targets specific individuals after harvesting information about them. The results served as proof-of- concept (PoC) about how seemingly competing entities could use IODEF to exchange sanitized security information. As this was a PoC exercise, only example information (no real threats) was shared as part of the exchanges. Kampanakis & Suzuki Informational PAGE 8 top

RFC 8274 IODEF Guidance November 2017 ____________ ____________ | Vendor X | | Vendor Y | | RID Agent |_______-------------________| RID Agent | |___________| | Internet | |___________| ------------- ---- RID Report message ---> -- carrying IODEF example -> --------- over TLS --------> <----- RID Ack message ----- <--- in case of failure ---- Figure 2: PoC Peering Topology Figure 2 shows how RID interactions took place during the PoC. Participating organizations were running RID Agent software on premises. The RID Agents formed peering relationships with other participating organizations. When Entity X had a new incident to exchange, it would package it in IODEF and send it to Entity Y over Transport Layer Security (TLS) in a RID Report message. In case there was an issue with the message, Entity Y would send a RID Acknowledgement message back to Entity X, which included an application-level message to describe the issue. Interoperability between RID Agents implementing [RFC 6545] and [RFC 6546] was also confirmed. The first use case included sharing of malware data related to an Incident between CSIRTs. After Entity X detected an incident, Entity X would put data about malware found during the incident in a backend system. Entity X then decided to share the incident information with Entity Y about the malware discovered. This could be a human decision or part of an automated process. Below are the steps followed for the malware information exchange that was taking place: (1) Entity X has a sharing agreement with Entity Y and has already been configured with the IP address of Entity Y's RID Agent. (2) Entity X's RID Agent connects to Entity Y's RID Agent, and mutual authentication occurs using PKI digital certificates. Kampanakis & Suzuki Informational PAGE 9 top

RFC 8274 IODEF Guidance November 2017 (3) Entity X pushes out a RID Report message, which contains information about N pieces of discovered malware. IODEF is used in RID to describe the (a) hash of malware files; (b) registry settings changed by the malware; and (c) C2 information for the malware. (4) Entity Y receives a RID Report message and sends a RID Acknowledgement message. (5) Entity Y stores the data in a format that makes it possible for the backend to know which source the data came from. Another use case was sharing a DDoS attack as explained in the following scenario: Entity X, a Critical Infrastructure and Key Resource (CIKR) company, detects that their internet connection is saturated with an abnormal amount of traffic. Further investigation determines that this is an actual DDoS attack. Entity X's CSIRT contacts their ISP, Entity Y, and shares information with them about the attack traffic characteristics. Entity X's ISP is being overwhelmed by the amount of traffic, so it shares attack signatures and IP addresses of the most prolific hosts with its adjacent ISPs. Below are the steps followed for a DDoS information exchange: (1) Entity X has a sharing agreement with Entity Y and has already been configured with the IP address of Entity Y's RID Agent. (2) Entity X's RID Agent connects to Entity Y's RID Agent, and mutual authentication occurs using PKI digital certificates. (3) Entity X pushes out a RID Report message, which contains information about the DDoS attack. IODEF is used in RID to describe the following: (a) Start and Detect dates and times; (b) IP addresses of nodes sending DDoS traffic; (c) sharing and use restrictions; (d) traffic characteristics (protocols and ports); Kampanakis & Suzuki Informational PAGE 10 top

RFC 8274 IODEF Guidance November 2017 (e) HTTP user agents used; and (f) IP addresses of C2 for a botnet. (4) Entity Y receives a RID Report message and sends a RID Acknowledgement message. (5) Entity Y stores the data in a format that makes it possible for the backend to know which source the data came from. (6) Entity Y shares information with other ISP entities it has an established relationship with. One more use case was sharing spear-phishing email information as explained in the following scenario: the board members of several defense contractors receive a targeted email inviting them to attend a conference in San Francisco. The board members are asked to provide their personally identifiable information such as their home address, phone number, corporate email, etc., in an attached document that came with the email. The board members are also asked to click on a URL that would allow them to reach the sign-up page for the conference. One of the recipients believes the email to be a phishing attempt and forwards the email to their corporate CSIRT for analysis. The CSIRT identifies the email as an attempted spear- phishing incident and distributes the indicators to their sharing partners. Below are the steps followed for a spear-phishing information exchange between CSIRTs that were part of this PoC. (1) Entity X has a sharing agreement with Entity Y and has already been configured with the IP address of Entity Y's RID Agent. (2) Entity X's RID Agent connects to Entity Y's RID Agent, and mutual authentication occurs using PKI digital certificates. (3) Entity X pushes out a RID Report message that contains information about the spear-phishing email. IODEF is used in RID to describe the following: (a) attachment details (file Name, hash, size, malware family); (b) target description (IP, domain, NSLookup); (c) email information (From, Subject, header information, date/ time, digital signature); and (d) confidence score. Kampanakis & Suzuki Informational PAGE 11 top

RFC 8274 IODEF Guidance November 2017 (4) Entity Y receives a RID Report message and sends a RID Acknowledgement message. (5) Entity Y stores the data in a format that makes it possible for the backend to know which source the data came from. Appendix B includes some of the IODEF example information that was exchanged by the organizations' RID Agents as part of this PoC. 5.3. Use Cases Other use cases of IODEF, aside from the ones described above, could be as follows: (1) ISP notifying a national CERT or organization when it identifies and acts upon an incident, and CERTs notifying ISPs when they are aware of incidents. (2) Suspected phishing emails could be shared amongst organizations and national agencies. Automation could validate web content that the suspicious emails are pointing to. Identified malicious content linked in a phishing email could then be shared using IODEF. Phishing campaigns could thus be subverted much faster by automating information sharing using IODEF. (3) When finding a certificate that should be revoked, a third party would forward an automated IODEF message to the Certification Authority (CA) with the full context of the certificate, and the CA could act accordingly after checking its validity. Alternatively, in the event of a compromise of the private key of a certificate, a third party could alert the certificate owner about the compromise using IODEF. 6. IANA Considerations This memo does not require any IANA actions. 7. Security Considerations This document does not incur any new security issues, because it only talks about the usage of IODEFv2 defined in RFC 7970. Nevertheless, readers of this document should refer to the Security Considerations section of [RFC 7970]. Kampanakis & Suzuki Informational PAGE 12 top

RFC 8274 IODEF Guidance November 2017 8. References 8.1. Normative References [RFC 5901] Cain, P. and D. Jevans, "Extensions to the IODEF-Document Class for Reporting Phishing", RFC 5901, DOI 10.17487/RFC 5901, July 2010, <https://www.rfc-editor.org/info/RFC 5901>. [RFC 6545] Moriarty, K., "Real-time Inter-network Defense (RID)", RFC 6545, DOI 10.17487/RFC 6545, April 2012, <https://www.rfc-editor.org/info/RFC 6545>. [RFC 7203] Takahashi, T., Landfield, K., and Y. Kadobayashi, "An Incident Object Description Exchange Format (IODEF) Extension for Structured Cybersecurity Information", RFC 7203, DOI 10.17487/RFC 7203, April 2014, <https://www.rfc-editor.org/info/RFC 7203>. [RFC 7495] Montville, A. and D. Black, "Enumeration Reference Format for the Incident Object Description Exchange Format (IODEF)", RFC 7495, DOI 10.17487/RFC 7495, March 2015, <https://www.rfc-editor.org/info/RFC 7495>. [RFC 7970] Danyliw, R., "The Incident Object Description Exchange Format Version 2", RFC 7970, DOI 10.17487/RFC 7970, November 2016, <https://www.rfc-editor.org/info/RFC 7970>. 8.2. Informative References [IODEF_IMP] "Implementations on Incident Object Description Exchange Format", <http://siis.realmv6.org/implementations/>. [RFC 6546] Trammell, B., "Transport of Real-time Inter-network Defense (RID) Messages over HTTP/TLS", RFC 6546, DOI 10.17487/RFC 6546, April 2012, <https://www.rfc-editor.org/info/RFC 6546>. [RFC 8134] Inacio, C. and D. Miyamoto, "Management Incident Lightweight Exchange (MILE) Implementation Report", RFC 8134, DOI 10.17487/RFC 8134, May 2017, <https://www.rfc-editor.org/info/RFC 8134>. Kampanakis & Suzuki Informational PAGE 13 top

RFC 8274 IODEF Guidance November 2017 Appendix A. Indicator Predicate Logic Examples In the following example, the EventData class evaluates as a Flow of one System with source address 192.0.2.104 OR 192.0.2.106 AND target address 198.51.100.1. <!-- ...XML code omitted... --> <IndicatorData> <Indicator> <IndicatorID name="csirt.example.com" version="1"> G90823490 </IndicatorID> <Description>C2 domains</Description> <IndicatorExpression operator="and"> <IndicatorExpression operator="or"> <Observable> <System category="source" spoofed="no"> <Node> <Address category="ipv4-addr"> 192.0.2.104 </Address> </Node> </System> </Observable> <Observable> <System category="source" spoofed="no"> <Node> <Address category="ipv4-addr"> 192.0.2.106 </Address> </Node> </System> </Observable> </IndicatorExpression> <Observable> <System category="target" spoofed="no"> <Node> <Address category="ipv4-addr"> 198.51.100.1 </Address> </Node> </System> </Observable> </IndicatorExpression> </Indicator> </IndicatorData> <!-- ...XML code omitted... --> Kampanakis & Suzuki Informational PAGE 14 top

RFC 8274 IODEF Guidance November 2017 Similarly, the FileData Class can be an observable in an IndicatorExpression. The hash values of two files can be used to match against an indicator using Boolean "or" logic. In the following example, the indicator consists of either of the two files with two different hashes. <!-- ...XML code omitted... --> <IndicatorData> <Indicator> <IndicatorID name="csirt.example.com" version="1"> A4399IWQ </IndicatorID> <Description>File hash watchlist</Description> <IndicatorExpression operator="or"> <Observable> <FileData> <File> <FileName>dummy.txt</FileName> <HashData scope="file-contents"> <Hash> <ds:DigestMethod Algorithm= "http://www.w3.org/2001/04/xmlenc#sha256"/> <ds:DigestValue> 141accec23e7e5157de60853cb1e01bc38042d 08f9086040815300b7fe75c184 </ds:DigestValue> </Hash> </HashData> </File> </FileData> </Observable> <Observable> <FileData> <File> <FileName>dummy2.txt</FileName> <HashData scope="file-contents"> <Hash> <ds:DigestMethod Algorithm= "http://www.w3.org/2001/04/xmlenc#sha256"/> <ds:DigestValue> 141accec23e7e5157de60853cb1e01bc38042d 08f9086040815300b7fe75c184 </ds:DigestValue> </Hash> </HashData> </File> </FileData> </Observable> Kampanakis & Suzuki Informational PAGE 15 top

RFC 8274 IODEF Guidance November 2017 </IndicatorExpression> </Indicator> </IndicatorData> <!-- ...XML code omitted... --> Appendix B. Inter-vendor and Service Provider Exercise Examples Below, some of the IODEF example information that was exchanged by the vendors as part of this proof-of-concept, inter-vendor and service provider exercise. B.1. Malware Delivery URL This example indicates malware and a related URL for file delivery. <?xml version="1.0" encoding="UTF-8"?> <IODEF-Document version="2.00" xmlns="urn:ietf:params:xml:ns:iodef-2.0" xmlns:iodef="urn:ietf:params:xml:ns:iodef-2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <iodef:Incident purpose="reporting"> <iodef:IncidentID name="csirt.example.com"> 189801 </iodef:IncidentID> <iodef:ReportTime>2012-12-05T12:20:00+00:00</iodef:ReportTime> <iodef:GenerationTime>2012-12-05T12:20:00+00:00 </iodef:GenerationTime> <iodef:Description>Malware and related indicators </iodef:Description> <iodef:Assessment occurrence="potential"> <iodef:SystemImpact severity="medium" type="breach-privacy"> <iodef:Description>Malware with C2 </iodef:Description> </iodef:SystemImpact> </iodef:Assessment> <iodef:Contact role="creator" type="organization"> <iodef:ContactName>example.com CSIRT </iodef:ContactName> <iodef:Email> <iodef:EmailTo>contact@csirt.example.com </iodef:EmailTo> </iodef:Email> </iodef:Contact> <iodef:EventData> <iodef:Flow> <iodef:System category="source"> <iodef:Node> <iodef:Address category="ipv4-addr">192.0.2.200 Kampanakis & Suzuki Informational PAGE 16 top

RFC 8274 IODEF Guidance November 2017 </iodef:Address> <iodef:Address category="site-uri"> /log-bin/lunch_install.php?aff_id=1&amp;lunch_id=1&amp; maddr=&amp;action=install </iodef:Address> </iodef:Node> <iodef:NodeRole category="www"/> </iodef:System> </iodef:Flow> </iodef:EventData> </iodef:Incident> </IODEF-Document> B.2. DDoS The DDoS test exchanged information that described a DDoS, including protocols and ports, bad IP addresses, and HTTP user agent fields. The IODEF version used for the data representation was based on [RFC 7970]. <?xml version="1.0" encoding="UTF-8"?> <IODEF-Document version="2.00" xmlns="urn:ietf:params:xml:ns:iodef-2.0" xmlns:iodef="urn:ietf:params:xml:ns:iodef-2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <iodef:Incident purpose="reporting" restriction="default"> <iodef:IncidentID name="csirt.example.com"> 189701 </iodef:IncidentID> <iodef:DetectTime>2013-02-05T01:15:45+00:00</iodef:DetectTime> <iodef:StartTime>2013-02-05T00:34:45+00:00</iodef:StartTime> <iodef:ReportTime>2013-02-05T01:34:45+00:00</iodef:ReportTime> <iodef:GenerationTime>2013-02-05T01:15:45+00:00 </iodef:GenerationTime> <iodef:Description>DDoS Traffic Seen</iodef:Description> <iodef:Assessment occurrence="actual"> <iodef:SystemImpact severity="medium" type="availability-system"> <iodef:Description>DDoS Traffic </iodef:Description> </iodef:SystemImpact> <iodef:Confidence rating="high"/> </iodef:Assessment> <iodef:Contact role="creator" type="organization"> <iodef:ContactName>Dummy Test</iodef:ContactName> <iodef:Email> <iodef:EmailTo>contact@dummytest.com </iodef:EmailTo> </iodef:Email> Kampanakis & Suzuki Informational PAGE 17 top

RFC 8274 IODEF Guidance November 2017 </iodef:Contact> <iodef:EventData> <iodef:Description> Dummy Test sharing with ISP1 </iodef:Description> <iodef:Method> <iodef:Reference> <iodef:URL> http://blog.spiderlabs.com/2011/01/loic-ddos- analysis-and-detection.html </iodef:URL> <iodef:URL> http://en.wikipedia.org/wiki/Low_Orbit_Ion_Cannon </iodef:URL> <iodef:Description> Low Orbit Ion Cannon User Agent </iodef:Description> </iodef:Reference> </iodef:Method> <iodef:Flow> <iodef:System category="source" spoofed="no"> <iodef:Node> <iodef:Address category="ipv4-addr"> 192.0.2.104 </iodef:Address> </iodef:Node> <iodef:Service ip-protocol="6"> <iodef:Port>1337</iodef:Port> </iodef:Service> </iodef:System> <iodef:System category="source" spoofed="no"> <iodef:Node> <iodef:Address category="ipv4-addr"> 192.0.2.106 </iodef:Address> </iodef:Node> <iodef:Service ip-protocol="6"> <iodef:Port>1337</iodef:Port> </iodef:Service> </iodef:System> <iodef:System category="source" spoofed="yes"> <iodef:Node> <iodef:Address category="ipv4-net"> 198.51.100.0/24 </iodef:Address> </iodef:Node> <iodef:Service ip-protocol="6"> <iodef:Port>1337</iodef:Port> Kampanakis & Suzuki Informational PAGE 18 top

RFC 8274 IODEF Guidance November 2017 </iodef:Service> </iodef:System> <iodef:System category="source" spoofed="yes"> <iodef:Node> <iodef:Address category="ipv6-addr"> 2001:db8:dead:beef::1 </iodef:Address> </iodef:Node> <iodef:Service ip-protocol="6"> <iodef:Port>1337</iodef:Port> </iodef:Service> </iodef:System> <iodef:System category="target"> <iodef:Node> <iodef:Address category="ipv4-addr"> 203.0.113.1 </iodef:Address> </iodef:Node> <iodef:Service ip-protocol="6"> <iodef:Port>80</iodef:Port> </iodef:Service> </iodef:System> <iodef:System category="sensor"> <iodef:Node> </iodef:Node> <iodef:Description> Information provided in Flow class instance is from Inspection of traffic from network tap </iodef:Description> </iodef:System> </iodef:Flow> <iodef:Expectation action="other"/> </iodef:EventData> <iodef:IndicatorData> <iodef:Indicator> <iodef:IndicatorID name="csirt.example.com" version="1"> G83345941 </iodef:IndicatorID> <iodef:Description> User-Agent string </iodef:Description> <iodef:Observable> <iodef:BulkObservable type="http-user-agent"> <iodef:BulkObservableList> user-agent="Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12"> </iodef:BulkObservableList> Kampanakis & Suzuki Informational PAGE 19 top

RFC 8274 IODEF Guidance November 2017 </iodef:BulkObservable> </iodef:Observable> </iodef:Indicator> </iodef:IndicatorData> </iodef:Incident> </IODEF-Document> B.3. Spear Phishing The spear-phishing test exchanged information that described a spear- phishing email, including DNS records and addresses about the sender, malicious attached file information, and email data. The IODEF version used for the data representation was based on [RFC 7970]. <?xml version="1.0" encoding="UTF-8"?> <IODEF-Document version="2.00" xmlns="urn:ietf:params:xml:ns:iodef-2.0" xmlns:iodef="urn:ietf:params:xml:ns:iodef-2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> <iodef:Incident purpose="reporting"> <iodef:IncidentID name="csirt.example.com"> 189601 </iodef:IncidentID> <iodef:DetectTime>2013-01-04T08:06:12+00:00</iodef:DetectTime> <iodef:StartTime>2013-01-04T08:01:34+00:00</iodef:StartTime> <iodef:EndTime>2013-01-04T08:31:27+00:00</iodef:EndTime> <iodef:ReportTime>2013-01-04T09:15:45+00:00</iodef:ReportTime> <iodef:GenerationTime>2013-01-04T09:15:45+00:00 </iodef:GenerationTime> <iodef:Description> Zeus Spear Phishing E-mail with Malware Attachment </iodef:Description> <iodef:Assessment occurrence="potential"> <iodef:SystemImpact severity="medium" type="takeover-system"> <iodef:Description> Malware with Command and Control Server and System Changes </iodef:Description> </iodef:SystemImpact> </iodef:Assessment> <iodef:Contact role="creator" type="organization"> <iodef:ContactName>example.com CSIRT</iodef:ContactName> <iodef:Email> <iodef:EmailTo>contact@csirt.example.com</iodef:EmailTo> </iodef:Email> </iodef:Contact> <iodef:EventData> <iodef:Description> Kampanakis & Suzuki Informational PAGE 20 top

RFC 8274 IODEF Guidance November 2017 Targeting Defense Contractors, specifically board members attending Dummy Con </iodef:Description> <iodef:Method> <iodef:Reference observable-id="ref-1234"> <iodef:Description>Zeus</iodef:Description> </iodef:Reference> </iodef:Method> <iodef:Flow> <iodef:System category="source"> <iodef:Node> <iodef:Address category="site-uri"> http://www.zeusevil.example.com </iodef:Address> <iodef:Address category="ipv4-addr"> 192.0.2.166 </iodef:Address> <iodef:Address category="asn"> 65535 </iodef:Address> <iodef:Address category="ext-value" ext-category="as-name"> EXAMPLE-AS - University of Example </iodef:Address> <iodef:Address category="ext-value" ext-category="as-prefix"> 192.0.2.0/24 </iodef:Address> </iodef:Node> <iodef:NodeRole category="malware-distribution"/> </iodef:System> </iodef:Flow> <iodef:Flow> <iodef:System category="source"> <iodef:Node> <iodef:DomainData> <Name>mail1.evildave.example.com</Name> </iodef:DomainData> <iodef:Address category="ipv4-addr"> 198.51.100.6 </iodef:Address> <iodef:Address category="asn"> 65534 </iodef:Address> <iodef:Address category="ext-value" ext-category="as-name"> EXAMPLE-AS - University of Example </iodef:Address> Kampanakis & Suzuki Informational PAGE 21 top

RFC 8274 IODEF Guidance November 2017 <iodef:DomainData> <iodef:Name>evildave.example.com</iodef:Name> <iodef:DateDomainWasChecked>2013-01-04T09:10:24+00:00 </iodef:DateDomainWasChecked> <!-- <iodef:RelatedDNS RecordType="MX"> --> <iodef:RelatedDNS dtype="string"> evildave.example.com MX preference = 10, mail exchanger = mail1.evildave.example.com </iodef:RelatedDNS> <iodef:RelatedDNS dtype="string"> mail1.evildave.example.com internet address = 198.51.100.6 </iodef:RelatedDNS> <iodef:RelatedDNS dtype="string"> zuesevil.example.com. IN TXT \"v=spf1 a mx -all\" </iodef:RelatedDNS> </iodef:DomainData> </iodef:Node> <iodef:NodeRole category="mail"> <iodef:Description> Sending phishing mails </iodef:Description> </iodef:NodeRole> <iodef:Service> <iodef:EmailData> <iodef:EmailFrom> emaildave@evildave.example.com </iodef:EmailFrom> <iodef:EmailSubject> Join us at Dummy Con </iodef:EmailSubject> <iodef:EmailX-Mailer> StormRider 4.0 </iodef:EmailX-Mailer> </iodef:EmailData> </iodef:Service> </iodef:System> <iodef:System category="target"> <iodef:Node> <iodef:Address category="ipv4-addr"> 203.0.113.2 </iodef:Address> </iodef:Node> </iodef:System> </iodef:Flow> <iodef:Expectation action="other"/> <iodef:Record> <iodef:RecordData> Kampanakis & Suzuki Informational PAGE 22 top

RFC 8274 IODEF Guidance November 2017 <iodef:FileData observable-id="fd-1234"> <iodef:File> <iodef:FileName> Dummy Con Sign Up Sheet.txt </iodef:FileName> <iodef:FileSize> 152 </iodef:FileSize> <iodef:HashData scope="file-contents"> <iodef:Hash> <ds:DigestMethod Algorithm= "http://www.w3.org/2001/04/xmlenc#sha256"/> <ds:DigestValue> 141accec23e7e5157de60853cb1e01bc38042d 08f9086040815300b7fe75c184 </ds:DigestValue> </iodef:Hash> </iodef:HashData> </iodef:File> </iodef:FileData> </iodef:RecordData> <iodef:RecordData> <iodef:CertificateData> <iodef:Certificate> <ds:X509Data> <ds:X509IssuerSerial> <ds:X509IssuerName>FakeCA </ds:X509IssuerName> <ds:X509SerialNumber> 57482937101 </ds:X509SerialNumber> </ds:X509IssuerSerial> <ds:X509SubjectName>EvilDaveExample </ds:X509SubjectName> </ds:X509Data> </iodef:Certificate> </iodef:CertificateData> </iodef:RecordData> </iodef:Record> </iodef:EventData> </iodef:Incident> </IODEF-Document> Kampanakis & Suzuki Informational PAGE 23 top

RFC 8274 IODEF Guidance November 2017 B.4. Malware In this test, malware information was exchanged using RID and IODEF. The information included file hashes, registry setting changes, and the C2 servers the malware uses. <?xml version="1.0" encoding="UTF-8"?> <IODEF-Document version="2.00" xmlns="urn:ietf:params:xml:ns:iodef-2.0" xmlns:iodef="urn:ietf:params:xml:ns:iodef-2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> <iodef:Incident purpose="reporting"> <iodef:IncidentID name="csirt.example.com"> 189234 </iodef:IncidentID> <iodef:ReportTime>2013-03-07T16:14:56.757+05:30</iodef:ReportTime> <iodef:GenerationTime>2013-03-07T16:14:56.757+05:30 </iodef:GenerationTime> <iodef:Description> Malware and related indicators identified </iodef:Description> <iodef:Assessment occurrence="potential"> <iodef:SystemImpact severity="medium" type="breach-proprietary"> <iodef:Description> Malware with Command and Control Server and System Changes </iodef:Description> </iodef:SystemImpact> </iodef:Assessment> <iodef:Contact role="creator" type="organization"> <iodef:ContactName>example.com CSIRT</iodef:ContactName> <iodef:Email> <iodef:EmailTo>contact@csirt.example.com</iodef:EmailTo> </iodef:Email> </iodef:Contact> <iodef:EventData> <iodef:Method> <iodef:Reference> <iodef:URL> http://www.threatexpert.example.com/report.aspx? md5=e2710ceb088dacdcb03678db250742b7 </iodef:URL> <iodef:Description>Zeus</iodef:Description> </iodef:Reference> </iodef:Method> <iodef:Flow> <iodef:System category="source"> <iodef:Node> Kampanakis & Suzuki Informational PAGE 24 top

RFC 8274 IODEF Guidance November 2017 <iodef:Address category="ipv4-addr" observable-id="addr-c2-91011-001"> 203.0.113.200 </iodef:Address> <iodef:Address category="site-uri" observable-id="addr-c2-91011-002"> http://zeus.556677889900.example.com/log-bin/ lunch_install.php?aff_id=1&amp; lunch_id=1&amp;maddr=&amp; action=install </iodef:Address> </iodef:Node> <iodef:NodeRole category="c2-server"/> </iodef:System> </iodef:Flow> <iodef:Record> <iodef:RecordData> <iodef:FileData observable-id="file-91011-001"> <iodef:File> <iodef:HashData scope="file-contents"> <iodef:Hash> <ds:DigestMethod Algorithm= "http://www.w3.org/2001/04/xmlenc#sha1"/> <ds:DigestValue> MHg2NzUxQTI1MzQ4M0E2N0Q4NkUwRjg0NzYwRjYxRjEwQkJDQzJF REZG </ds:DigestValue> </iodef:Hash> </iodef:HashData> </iodef:File> <iodef:File> <iodef:HashData scope="file-contents"> <iodef:Hash> <ds:DigestMethod Algorithm= "http://www.w3.org/2001/04/xmlenc#md5"/> <ds:DigestValue> MHgyRTg4ODA5ODBENjI0NDdFOTc5MEFGQTg5NTEzRjBBNA== </ds:DigestValue> </iodef:Hash> </iodef:HashData> </iodef:File> </iodef:FileData> <iodef:WindowsRegistryKeysModified observable-id= "regkey-91011-001"> <iodef:Key registryaction="add-value"> <iodef:KeyName> HKLM\Software\Microsoft\Windows\ CurrentVersion\Run\tamg Kampanakis & Suzuki Informational PAGE 25 top

RFC 8274 IODEF Guidance November 2017 </iodef:KeyName> <iodef:Value> ?\?\?%System%\wins\mc.exe\?\?? </iodef:Value> </iodef:Key> <iodef:Key registryaction="modify-value"> <iodef:KeyName>HKLM\Software\Microsoft\ Windows\CurrentVersion\Run\dqo </iodef:KeyName> <iodef:Value>"\"\"%Windir%\Resources\ Themes\Luna\km.exe\?\?" </iodef:Value> </iodef:Key> </iodef:WindowsRegistryKeysModified> </iodef:RecordData> </iodef:Record> </iodef:EventData> <iodef:EventData> <iodef:Method> <iodef:Reference> <iodef:URL> http://www.threatexpert.example.com/report.aspx? md5=c3c528c939f9b176c883ae0ce5df0001 </iodef:URL> <iodef:Description>Cridex</iodef:Description> </iodef:Reference> </iodef:Method> <iodef:Flow> <iodef:System category="source"> <iodef:Node> <iodef:Address category="ipv4-addr" observable-id="addr-c2-91011-003"> 203.0.113.100 </iodef:Address> </iodef:Node> <iodef:NodeRole category="c2-server"/> <iodef:Service ip-protocol="6"> <iodef:Port>8080</iodef:Port> </iodef:Service> </iodef:System> </iodef:Flow> <iodef:Record> <iodef:RecordData> <iodef:FileData observable-id="file-91011-002"> <iodef:File> <iodef:HashData scope="file-contents"> <iodef:Hash> Kampanakis & Suzuki Informational PAGE 26 top

RFC 8274 IODEF Guidance November 2017 <ds:DigestMethod Algorithm= "http://www.w3.org/2001/04/xmlenc#sha1"/> <ds:DigestValue> MHg3MjYzRkUwRDNBMDk1RDU5QzhFMEM4OTVBOUM 1ODVFMzQzRTcxNDFD </ds:DigestValue> </iodef:Hash> </iodef:HashData> </iodef:File> </iodef:FileData> <iodef:FileData observable-id="file-91011-003"> <iodef:File> <iodef:HashData scope="file-contents"> <iodef:Hash> <ds:DigestMethod Algorithm= "http://www.w3.org/2001/04/xmlenc#md5"/> <ds:DigestValue> MHg0M0NEODUwRkNEQURFNDMzMEE1QkVBNkYxNkVFOTcxQw== </ds:DigestValue> </iodef:Hash> </iodef:HashData> </iodef:File> </iodef:FileData> <iodef:WindowsRegistryKeysModified observable-id= "regkey-91011-002"> <iodef:Key registryaction="add-value"> <iodef:KeyName> HKLM\Software\Microsoft\Windows\ CurrentVersion\Run\KB00121600.exe </iodef:KeyName> <iodef:Value> \?\?%AppData%\KB00121600.exe\?\? </iodef:Value> </iodef:Key> </iodef:WindowsRegistryKeysModified> </iodef:RecordData> </iodef:Record> </iodef:EventData> <iodef:IndicatorData> <iodef:Indicator> <iodef:IndicatorID name="csirt.example.com" version="1"> ind-91011 </iodef:IndicatorID> <iodef:Description> evil c2 server, file hash, and registry key </iodef:Description> <iodef:IndicatorExpression operator="or"> <iodef:IndicatorExpression operator="or"> Kampanakis & Suzuki Informational PAGE 27 top

RFC 8274 IODEF Guidance November 2017 <iodef:Observable> <iodef:Address category="site-uri" observable-id="addr-qrst"> http://foo.example.com:12345/evil/cc.php </iodef:Address> </iodef:Observable> <iodef:Observable> <iodef:Address category="ipv4-addr" observable-id="addr-stuv"> 192.0.2.1 </iodef:Address> </iodef:Observable> <iodef:Observable> <iodef:Address category="ipv4-addr" observable-id="addr-tuvw"> 198.51.100.1 </iodef:Address> </iodef:Observable> <iodef:Observable> <iodef:Address category="ipv6-addr" observable-id="addr-uvwx"> 2001:db8:dead:beef::1 </iodef:Address> </iodef:Observable> <iodef:ObservableReference uid-ref="addr-c2-91011-001"/> <iodef:ObservableReference uid-ref="addr-c2-91011-002"/> <iodef:ObservableReference uid-ref="addr-c2-91011-003"/> </iodef:IndicatorExpression> <iodef:IndicatorExpression operator="and"> <iodef:Observable> <iodef:FileData observable-id="file-91011-000"> <iodef:File> <iodef:HashData scope="file-contents"> <iodef:Hash> <ds:DigestMethod Algorithm= "http://www.w3.org/2001/04/xmlenc#sha256"/> <ds:DigestValue> 141accec23e7e5157de60853cb1e01bc38042d08f 9086040815300b7fe75c184 </ds:DigestValue> </iodef:Hash> </iodef:HashData> </iodef:File> </iodef:FileData> </iodef:Observable> <iodef:Observable> <iodef:WindowsRegistryKeysModified observable-id= "regkey-91011-000"> Kampanakis & Suzuki Informational PAGE 28 top

RFC 8274 IODEF Guidance November 2017 <iodef:Key registryaction="add-key" observable-id="regkey-vwxy"> <iodef:KeyName> HKLM\SYSTEM\CurrentControlSet\ Services\.Net CLR </iodef:KeyName> </iodef:Key> <iodef:Key registryaction="add-key" observable-id="regkey-wxyz"> <iodef:KeyName> HKLM\SYSTEM\CurrentControlSet\ Services\.Net CLR\Parameters </iodef:KeyName> <iodef:Value> \"\"%AppData%\KB00121600.exe\"\" </iodef:Value> </iodef:Key> <iodef:Key registryaction="add-value" observable-id="regkey-xyza"> <iodef:KeyName> HKLM\SYSTEM\CurrentControlSet\Services\ .Net CLR\Parameters\ServiceDll </iodef:KeyName> <iodef:Value>C:\bad.exe</iodef:Value> </iodef:Key> <iodef:Key registryaction="modify-value" observable-id="regkey-zabc"> <iodef:KeyName> HKLM\SYSTEM\CurrentControlSet\ Services\.Net CLR\Parameters\Bar </iodef:KeyName> <iodef:Value>Baz</iodef:Value> </iodef:Key> </iodef:WindowsRegistryKeysModified> </iodef:Observable> </iodef:IndicatorExpression> <iodef:IndicatorExpression operator="or"> <iodef:IndicatorExpression operator="and"> <iodef:ObservableReference uid-ref="file-91011-001"/> <iodef:ObservableReference uid-ref="regkey-91011-001"/> </iodef:IndicatorExpression> <iodef:IndicatorExpression operator="and"> <iodef:IndicatorExpression operator="or"> <iodef:ObservableReference uid-ref="file-91011-002"/> <iodef:ObservableReference uid-ref="file-91011-003"/> </iodef:IndicatorExpression> <iodef:ObservableReference uid-ref="regkey-91011-002"/> </iodef:IndicatorExpression> Kampanakis & Suzuki Informational PAGE 29 top

RFC 8274 IODEF Guidance November 2017 </iodef:IndicatorExpression> </iodef:IndicatorExpression> </iodef:Indicator> </iodef:IndicatorData> </iodef:Incident> </IODEF-Document> B.5. IoT Malware The Internet of Things (IoT) malware test exchanged information that described a bad IP address of IoT malware and its scanned ports. This example information is extracted from alert messages of a darknet monitoring system referred to in [RFC 8134]. The IODEF version used for the data representation was based on [RFC 7970]. <?xml version="1.0" encoding="UTF-8"?> <IODEF-Document version="2.00" xmlns="urn:ietf:params:xml:ns:iodef-2.0" xmlns:iodef="urn:ietf:params:xml:ns:iodef-2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <iodef:Incident purpose="reporting"> <iodef:IncidentID name="csirt.example.com"> 189802 </iodef:IncidentID> <iodef:ReportTime>2017-03-01T01:15:00+09:00</iodef:ReportTime> <iodef:GenerationTime>2017-03-01T01:15:00+09:00 </iodef:GenerationTime> <iodef:Description>IoT Malware and related indicators </iodef:Description> <iodef:Assessment occurrence="potential"> <iodef:SystemImpact severity="medium" type="takeover-system"> <iodef:Description>IoT Malware is scanning other hosts </iodef:Description> </iodef:SystemImpact> </iodef:Assessment> <iodef:Contact role="creator" type="organization"> <iodef:ContactName>example.com CSIRT </iodef:ContactName> <iodef:Email> <iodef:EmailTo>contact@csirt.example.com </iodef:EmailTo> </iodef:Email> </iodef:Contact> <iodef:EventData> <iodef:Discovery source="nidps"> <iodef:Description> Detected by darknet monitoring </iodef:Description> Kampanakis & Suzuki Informational PAGE 30 top

RFC 8274 IODEF Guidance November 2017 </iodef:Discovery> <iodef:Flow> <iodef:System category="source"> <iodef:Node> <iodef:Address category="ipv4-addr"> 192.0.2.210 </iodef:Address> </iodef:Node> <iodef:NodeRole category="camera"/> <iodef:Service ip-protocol="6"> <iodef:Port>23</iodef:Port> </iodef:Service> <iodef:OperatingSystem> <iodef:Description> Example Surveillance Camera OS 2.1.1 </iodef:Description> </iodef:OperatingSystem> </iodef:System> </iodef:Flow> <iodef:EventData> <iodef:Flow> <iodef:System category="target"> <iodef:Node> <iodef:Address category="ipv4-addr"> 198.51.100.1 </iodef:Address> </iodef:Node> <iodef:NodeRole category="honeypot"/> <iodef:Service ip-protocol="6"> <iodef:Port>23</iodef:Port> </iodef:Service> </iodef:System> </iodef:Flow> </iodef:EventData> <iodef:EventData> <iodef:Flow> <iodef:System category="target"> <iodef:Node> <iodef:Address category="ipv4-addr"> 198.51.100.94 </iodef:Address> </iodef:Node> <iodef:NodeRole category="honeypot"/> <iodef:Service ip-protocol="6"> <iodef:Port>23</iodef:Port> </iodef:Service> </iodef:System> </iodef:Flow> Kampanakis & Suzuki Informational PAGE 31 top

RFC 8274 IODEF Guidance November 2017 </iodef:EventData> <iodef:EventData> <iodef:Flow> <iodef:System category="target"> <iodef:Node> <iodef:Address category="ipv4-addr"> 198.51.100.237 </iodef:Address> </iodef:Node> <iodef:NodeRole category="honeypot"/> <iodef:Service ip-protocol="6"> <iodef:Port>2323</iodef:Port> </iodef:Service> </iodef:System> </iodef:Flow> </iodef:EventData> </iodef:EventData> </iodef:Incident> </IODEF-Document> Kampanakis & Suzuki Informational PAGE 32 top

RFC 8274 IODEF Guidance November 2017 Authors' Addresses Panos Kampanakis Cisco Systems Email: pkampana@cisco.com Mio Suzuki NICT 4-2-1, Nukui-Kitamachi Koganei, Tokyo 184-8795 Japan Email: mio@nict.go.jp Kampanakis & Suzuki Informational PAGE 33 top

RFC TOTAL SIZE: 67602 bytes PUBLICATION DATE: Monday, November 20th, 2017 LEGAL RIGHTS: The IETF Trust (see BCP 78)


RFC-ARCHIVE.ORG

© RFC 8274: The IETF Trust, Monday, November 20th, 2017
© the RFC Archive, 2024, RFC-Archive.org
Maintainer: J. Tunnissen

Privacy Statement