|
|
|
|
|
IETF RFC 8080
Last modified on Wednesday, February 15th, 2017
Permanent link to RFC 8080
Search GitHub Wiki for RFC 8080
Show other RFCs mentioning RFC 8080
Internet Engineering Task Force (IETF) O. Sury
Request for Comments: 8080 CZ.NIC
Category: Standards Track R. Edmonds
ISSN: 2070-1721 Fastly
February 2017
Edwards-Curve Digital Security Algorithm (EdDSA) for DNSSEC
Abstract
This document describes how to specify Edwards-curve Digital Security
Algorithm (EdDSA) keys and signatures in DNS Security (DNSSEC). It
uses EdDSA with the choice of two curves: Ed25519 and Ed448.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/RFC 8080.
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Sury & Edmonds Standards Track PAGE 1
RFC 8080 EdDSA for DNSSEC February 2017
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Requirements Language . . . . . . . . . . . . . . . . . . . . 2
3. DNSKEY Resource Records . . . . . . . . . . . . . . . . . . . 2
4. RRSIG Resource Records . . . . . . . . . . . . . . . . . . . 3
5. Algorithm Number for DS, DNSKEY, and RRSIG Resource Records . 3
6. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6.1. Ed25519 Examples . . . . . . . . . . . . . . . . . . . . 3
6.2. Ed448 Examples . . . . . . . . . . . . . . . . . . . . . 4
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 5
8. Security Considerations . . . . . . . . . . . . . . . . . . . 5
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 6
9.1. Normative References . . . . . . . . . . . . . . . . . . 6
9.2. Informative References . . . . . . . . . . . . . . . . . 7
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 7
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 7
1. Introduction
DNSSEC, which is broadly defined in [RFC 4033], [RFC 4034], and
[RFC 4035], uses cryptographic keys and digital signatures to provide
authentication of DNS data. Currently, the most popular signature
algorithm in use is RSA. GOST [RFC 5933] and NIST-specified elliptic
curve cryptography [RFC 6605] are also standardized.
[RFC 8032] describes the elliptic curve signature system Edwards-curve
Digital Signature Algorithm (EdDSA) and recommends two curves,
Ed25519 and Ed448.
This document defines the use of DNSSEC's DS, DNSKEY, and RRSIG
resource records (RRs) with a new signing algorithm, EdDSA, using a
choice of two curves: Ed25519 and Ed448.
2. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC 2119].
3. DNSKEY Resource Records
An Ed25519 public key consists of a 32-octet value, which is encoded
into the Public Key field of a DNSKEY resource record as a simple bit
string. The generation of a public key is defined in Section 5.1.5
of [RFC 8032].
Sury & Edmonds Standards Track PAGE 2
RFC 8080 EdDSA for DNSSEC February 2017
An Ed448 public key consists of a 57-octet value, which is encoded
into the Public Key field of a DNSKEY resource record as a simple bit
string. The generation of a public key is defined in Section 5.2.5
of [RFC 8032].
4. RRSIG Resource Records
An Ed25519 signature consists of a 64-octet value, which is encoded
into the Signature field of an RRSIG resource record as a simple bit
string. The Ed25519 signature algorithm and verification of the
Ed25519 signature are described in Sections 5.1.6 and 5.1.7 of
[RFC 8032], respectively.
An Ed448 signature consists of a 114-octet value, which is encoded
into the Signature field of an RRSIG resource record as a simple bit
string. The Ed448 signature algorithm and verification of the Ed448
signature are described in Sections 5.2.6 and 5.2.7 of [RFC 8032],
respectively.
5. Algorithm Number for DS, DNSKEY, and RRSIG Resource Records
The algorithm number associated with the use of Ed25519 in DS,
DNSKEY, and RRSIG resource records is 15. The algorithm number
associated with the use of Ed448 in DS, DNSKEY, and RRSIG resource
records is 16. This registration is fully defined in the IANA
Considerations section.
6. Examples
6.1. Ed25519 Examples
Private-key-format: v1.2
Algorithm: 15 (ED25519)
PrivateKey: ODIyNjAzODQ2MjgwODAxMjI2NDUxOTAyMDQxNDIyNjI=
example.com. 3600 IN DNSKEY 257 3 15 (
l02Woi0iS8Aa25FQkUd9RMzZHJpBoRQwAQEX1SxZJA4= )
example.com. 3600 IN DS 3613 15 2 (
3aa5ab37efce57f737fc1627013fee07bdf241bd10f3b1964ab55c78e79
a304b )
example.com. 3600 IN MX 10 mail.example.com.
example.com. 3600 IN RRSIG MX 3 3600 (
1440021600 1438207200 3613 example.com. (
Edk+IB9KNNWg0HAjm7FazXyrd5m3Rk8zNZbvNpAcM+eysqcUOMIjWoevFkj
H5GaMWeG96GUVZu6ECKOQmemHDg== )
Sury & Edmonds Standards Track PAGE 3
RFC 8080 EdDSA for DNSSEC February 2017
Private-key-format: v1.2
Algorithm: 15 (ED25519)
PrivateKey: DSSF3o0s0f+ElWzj9E/Osxw8hLpk55chkmx0LYN5WiY=
example.com. 3600 IN DNSKEY 257 3 15 (
zPnZ/QwEe7S8C5SPz2OfS5RR40ATk2/rYnE9xHIEijs= )
example.com. 3600 IN DS 35217 15 2 (
401781b934e392de492ec77ae2e15d70f6575a1c0bc59c5275c04ebe80c
6614c )
example.com. 3600 IN MX 10 mail.example.com.
example.com. 3600 IN RRSIG MX 3 3600 (
1440021600 1438207200 35217 example.com. (
5LL2obmzdqjWI+Xto5eP5adXt/T5tMhasWvwcyW4L3SzfcRawOle9bodhC+
oip9ayUGjY9T/rL4rN3bOuESGDA== )
6.2. Ed448 Examples
Private-key-format: v1.2
Algorithm: 16 (ED448)
PrivateKey: xZ+5Cgm463xugtkY5B0Jx6erFTXp13rYegst0qRtNsOYnaVpMx0Z/c5EiA9x
8wWbDDct/U3FhYWA
example.com. 3600 IN DNSKEY 257 3 16 (
3kgROaDjrh0H2iuixWBrc8g2EpBBLCdGzHmn+G2MpTPhpj/OiBVHHSfPodx
1FYYUcJKm1MDpJtIA )
example.com. 3600 IN DS 9713 16 2 (
6ccf18d5bc5d7fc2fceb1d59d17321402f2aa8d368048db93dd811f5cb2
b19c7 )
example.com. 3600 IN MX 10 mail.example.com.
example.com. 3600 IN RRSIG MX 3 3600 (
1440021600 1438207200 9713 example.com. (
Nmc0rgGKpr3GKYXcB1JmqqS4NYwhmechvJTqVzt3jR+Qy/lSLFoIk1L+9e3
9GPL+5tVzDPN3f9kAwiu8KCuPPjtl227ayaCZtRKZuJax7n9NuYlZJIusX0
SOIOKBGzG+yWYtz1/jjbzl5GGkWvREUCUA )
Sury & Edmonds Standards Track PAGE 4
RFC 8080 EdDSA for DNSSEC February 2017
Private-key-format: v1.2
Algorithm: 16 (ED448)
PrivateKey: WEykD3ht3MHkU8iH4uVOLz8JLwtRBSqiBoM6fF72+Mrp/u5gjxuB1DV6NnPO
2BlZdz4hdSTkOdOA
example.com. 3600 IN DNSKEY 257 3 16 (
kkreGWoccSDmUBGAe7+zsbG6ZAFQp+syPmYUurBRQc3tDjeMCJcVMRDmgcN
Lp5HlHAMy12VoISsA )
example.com. 3600 IN DS 38353 16 2 (
645ff078b3568f5852b70cb60e8e696cc77b75bfaaffc118cf79cbda1ba
28af4 )
example.com. 3600 IN MX 10 mail.example.com.
example.com. 3600 IN RRSIG MX 3 3600 (
1440021600 1438207200 38353 example.com. (
+JjANio/LIzp7osmMYE5XD3H/YES8kXs5Vb9H8MjPS8OAGZMD37+LsCIcjg
5ivt0d4Om/UaqETEAsJjaYe56CEQP5lhRWuD2ivBqE0zfwJTyp4WqvpULbp
vaukswvv/WNEFxzEYQEIm9+xDlXj4pMAMA )
7. IANA Considerations
This document updates the IANA registry "Domain Name System Security
(DNSSEC) Algorithm Numbers". The following entries have been added
to the registry:
+--------------+----------+----------+
| Number | 15 | 16 |
| Description | Ed25519 | Ed448 |
| Mnemonic | ED25519 | ED448 |
| Zone Signing | Y | Y |
| Trans. Sec. | * | * |
| Reference | RFC 8080 | RFC 8080 |
+--------------+----------+----------+
* There has been no determination of standardization of the use of
this algorithm with Transaction Security.
8. Security Considerations
The security considerations of [RFC 8032] and [RFC 7748] are inherited
in the usage of Ed25519 and Ed448 in DNSSEC.
Ed25519 is intended to operate at around the 128-bit security level
and Ed448 at around the 224-bit security level. A sufficiently large
quantum computer would be able to break both. Reasonable projections
of the abilities of classical computers conclude that Ed25519 is
Sury & Edmonds Standards Track PAGE 5
RFC 8080 EdDSA for DNSSEC February 2017
perfectly safe. Ed448 is provided for those applications with
relaxed performance requirements and where there is a desire to hedge
against analytical attacks on elliptic curves.
These assessments could, of course, change in the future if new
attacks that work better than the ones known today are found.
A private key used for a DNSSEC zone MUST NOT be used for any other
purpose than for that zone. Otherwise, cross-protocol or cross-
application attacks are possible.
9. References
9.1. Normative References
[RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC 2119, March 1997,
<http://www.rfc-editor.org/info/RFC 2119>.
[RFC 4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "DNS Security Introduction and Requirements",
RFC 4033, DOI 10.17487/RFC 4033, March 2005,
<http://www.rfc-editor.org/info/RFC 4033>.
[RFC 4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Resource Records for the DNS Security Extensions",
RFC 4034, DOI 10.17487/RFC 4034, March 2005,
<http://www.rfc-editor.org/info/RFC 4034>.
[RFC 4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
Rose, "Protocol Modifications for the DNS Security
Extensions", RFC 4035, DOI 10.17487/RFC 4035, March 2005,
<http://www.rfc-editor.org/info/RFC 4035>.
[RFC 7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
for Security", RFC 7748, DOI 10.17487/RFC 7748, January
2016, <http://www.rfc-editor.org/info/RFC 7748>.
[RFC 8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", RFC 8032,
DOI 10.17487/RFC 8032, January 2017,
<http://www.rfc-editor.org/info/RFC 8032>.
Sury & Edmonds Standards Track PAGE 6
RFC 8080 EdDSA for DNSSEC February 2017
9.2. Informative References
[RFC 5933] Dolmatov, V., Ed., Chuprina, A., and I. Ustinov, "Use of
GOST Signature Algorithms in DNSKEY and RRSIG Resource
Records for DNSSEC", RFC 5933, DOI 10.17487/RFC 5933, July
2010, <http://www.rfc-editor.org/info/RFC 5933>.
[RFC 6605] Hoffman, P. and W. Wijngaards, "Elliptic Curve Digital
Signature Algorithm (DSA) for DNSSEC", RFC 6605,
DOI 10.17487/RFC 6605, April 2012,
<http://www.rfc-editor.org/info/RFC 6605>.
Acknowledgements
Some of the material in this document is copied liberally from
[RFC 6605].
The authors of this document wish to thank Jan Vcelak, Pieter Lexis,
Kees Monshouwer, Simon Josefsson, Paul Hoffman, and others for a
review of this document.
Authors' Addresses
Ondrej Sury
CZ.NIC
Milesovska 1136/5
Praha 130 00
Czech Republic
Email: ondrej.sury@nic.cz
Robert Edmonds
Fastly
Atlanta, Georgia
United States of America
Email: edmonds@mycre.ws
Sury & Edmonds Standards Track PAGE 7
RFC TOTAL SIZE: 13513 bytes
PUBLICATION DATE: Wednesday, February 15th, 2017
LEGAL RIGHTS: The IETF Trust (see BCP 78)
|