The RFC Archive
 The RFC Archive   RFC 8065   « Jump to any RFC number directly 
 RFC Home
Full RFC Index
Recent RFCs
RFC Standards
Best Current Practice
RFC Errata
1 April RFC



IETF RFC 8065



Last modified on Wednesday, February 22nd, 2017

Permanent link to RFC 8065
Search GitHub Wiki for RFC 8065
Show other RFCs mentioning RFC 8065







Internet Engineering Task Force (IETF)                         D. Thaler
Request for Comments: 8065                                     Microsoft
Category: Informational                                  February 2017
ISSN: 2070-1721


      Privacy Considerations for IPv6 Adaptation-Layer Mechanisms

 Abstract

   This document discusses how a number of privacy threats apply to
   technologies designed for IPv6 over various link-layer protocols, and
   it provides advice to protocol designers on how to address such
   threats in adaptation-layer specifications for IPv6 over such links.

 Status of This Memo

   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are a candidate for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/RFC 8065.

 Copyright Notice

   Copyright (c) 2017 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.






Thaler                        Informational                  PAGE 1 top


RFC 8065 IPv6-over-foo Privacy Considerations February 2017 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 2. Amount of Entropy Needed in Global Addresses . . . . . . . . 3 3. Potential Approaches . . . . . . . . . . . . . . . . . . . . 4 3.1. IEEE-Identifier-Based Addresses . . . . . . . . . . . . . 5 3.2. Short Addresses . . . . . . . . . . . . . . . . . . . . . 5 4. Recommendations . . . . . . . . . . . . . . . . . . . . . . . 6 5. Security Considerations . . . . . . . . . . . . . . . . . . . 7 6. Informative References . . . . . . . . . . . . . . . . . . . 7 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 9 1. Introduction RFC 6973 [RFC 6973] discusses privacy considerations for Internet protocols, and Section 5.2 of that document covers a number of privacy-specific threats. In the context of IPv6 addresses, Section 3 of [RFC 7721] provides further elaboration on the applicability of the privacy threats. When interface identifiers (IIDs) are generated without sufficient entropy compared to the link lifetime, devices and users can become vulnerable to the various threats discussed there, including: o Correlation of activities over time, if the same identifier is used for traffic over period of time o Location tracking, if the same interface identifier is used with different prefixes as a device moves between different networks o Device-specific vulnerability exploitation, if the identifier helps identify a vendor or version or protocol and hence suggests what types of attacks to try o Address scanning, which enables all of the above attacks by off-link attackers. (On some Non-Broadcast Multi-Access (NBMA) links where all nodes aren't already privy to all on-link addresses, address scans might also be done by on-link attackers; however, in most cases, address scans are not an interesting threat from on-link attackers and thus address scans generally apply only to routable addresses.) For example, for links that may last for years, "enough" bits of entropy means at least 46 or so bits (see Section 2 for why) in a routable address; ideally all 64 bits of the IID should be used, although historically some bits have been excluded for reasons Thaler Informational PAGE 2 top

RFC 8065 IPv6-over-foo Privacy Considerations February 2017 discussed in [RFC 7421]. Link-local addresses can also be susceptible to the same privacy threats from off-link attackers, since experience shows they are often leaked by upper-layer protocols such as SMTP, SIP, or DNS. For these reasons, [RFC 8064] recommends using an address generation scheme in [RFC 7217], rather than addresses generated from a fixed link-layer address. Furthermore, to mitigate the threat of correlation of activities over time on long-lived links, [RFC 4941] specifies the notion of a "temporary" address to be used for transport sessions (typically locally initiated outbound traffic to the Internet) that should not be linkable to a more permanent identifier such as a DNS name, user name, or fixed link-layer address. Indeed, the default address selection rules [RFC 6724] now prefer temporary addresses by default for outgoing connections. If a device needs to simultaneously support unlinkable traffic as well as traffic that is linkable to such a stable identifier, supporting simultaneous use of multiple addresses per device is necessary. 2. Amount of Entropy Needed in Global Addresses In terms of privacy threats discussed in [RFC 7721], the one with the need for the most entropy is address scans of routable addresses. To mitigate address scans, one needs enough entropy to make the probability of a successful address probe be negligible. Typically, this is measured in the length of time it would take to have a 50% probability of getting at least one hit. Address scans often rely on sending a packet such as a TCP SYN or ICMP Echo Request, then determining whether the reply is a) an ICMP unreachable error (if no host exists with that address), b) a TCP response or ICMP Echo Reply (if a host exists), or c) none of those, in which case nothing is known for certain. Many privacy-sensitive devices support a "stealth mode" as discussed in Section 5 of [RFC 7288] or are behind a network firewall that will drop unsolicited inbound traffic (e.g., TCP SYNs, ICMP Echo Requests, etc.) and thus no TCP RST or ICMP Echo Reply will be sent. In such cases, and when the device does not listen on a well-known TCP or UDP port known to the scanner, the effectiveness of an address scan is limited by the ability to get ICMP unreachable errors, since the attacker can only infer the presence of a host based on the absence of an ICMP unreachable error. Thaler Informational PAGE 3 top

RFC 8065 IPv6-over-foo Privacy Considerations February 2017 Generation of ICMP unreachable errors is typically rate limited to 2 per second (the default in routers such as Cisco routers running IOS 12.0 or later). Such a rate results in taking about a year to completely scan 26 bits of space. The actual math is as follows. Let 2^N be the number of devices on the subnet. Let 2^M be the size of the space to scan (i.e., M bits of entropy). Let S be the number of scan attempts. The formula for a 50% chance of getting at least one hit in S attempts is: P(at least one success) = 1 - (1 - 2^N/2^M)^S = 1/2. Assuming 2^M >> S, this simplifies to: S * 2^N/2^M = 1/2, giving S = 2^(M-N-1), or M = N + 1 + log_2(S). Using a scan rate of 2 per second, this results in the following rule of thumb: Bits of entropy needed = log_2(# devices per link) + log_2(seconds of link lifetime) + 2 For example, for a network with at most 2^16 devices on the same long-lived link, where the average lifetime of a link is 8 years (2^28 seconds) or less, this results in a need for at least 46 bits of entropy (16+28+2) so that an address scan would need to be sustained for longer than the lifetime of the link to have a 50% chance of getting a hit. Although 46 bits of entropy may be enough to provide privacy in such cases, 59 or more bits of entropy would be needed if addresses are used to provide security against attacks such as spoofing, as CGAs [RFC 3972] and HBAs [RFC 5535] do, since attacks are not limited by ICMP rate limiting but by the processing power of the attacker. See those RFCs for more discussion. If, on the other hand, the devices being scanned for respond to unsolicited inbound packets, then the address scan is not limited by the ICMP unreachable rate limit in routers, since an adversary can determine the presence of a host without them. In such cases, more bits of entropy would be needed to provide the same level of protection. Thaler Informational PAGE 4 top

RFC 8065 IPv6-over-foo Privacy Considerations February 2017 3. Potential Approaches The table below shows the number of bits of entropy currently available in various technologies: +---------------+--------------------------+--------------------+ | Technology | Reference | Bits of Entropy | +---------------+--------------------------+--------------------+ | 802.15.4 | [RFC 4944] | 16+ or any EUI-64 | | Bluetooth LE | [RFC 7668] | 48 | | DECT ULE | [DECT-ULE] | 40 or any EUI-48 | | MS/TP | [IPv6-over-MSTP] | 7 or 64 | | ITU-T G.9959 | [RFC 7428] | 8 | | NFC | [IPv6-over-NFC] | 5 | +---------------+--------------------------+--------------------+ Such technologies generally support either IEEE identifiers or so called "Short Addresses", or both, as link-layer addresses. We discuss each in turn. 3.1. IEEE-Identifier-Based Addresses Some technologies allow the use of IEEE EUI-48 or EUI-64 identifiers or allow the use of an arbitrary 64-bit identifier. Using such an identifier to construct IPv6 addresses makes it easy to use the normal LOWPAN_IPHC encoding [RFC 6282] with stateless compression, which allows such IPv6 addresses to be fully elided in common cases. Global addresses with interface identifiers formed from IEEE identifiers can have insufficient entropy to mitigate address scans unless the IEEE identifier itself has sufficient entropy and enough bits of entropy are carried over into the IPv6 address to sufficiently mitigate the threats. Privacy threats other than "Correlation over time" can be mitigated using per-network randomized link-layer addresses with enough entropy compared to the link lifetime. A number of such proposals can be found at <https://mentor.ieee.org/privecsg/documents>, and Section 10.8 of [BTCorev4.1] specifies one for Bluetooth. Using routable IPv6 addresses derived from such link-layer addresses would be roughly equivalent to those specified in [RFC 7217]. Correlation over time (for all addresses, not just routable addresses) can be mitigated if the link-layer address itself changes often enough, such as each time the link is established, if the link lifetime is short. For further discussion, see [RANDOM-ADDR]. Thaler Informational PAGE 5 top

RFC 8065 IPv6-over-foo Privacy Considerations February 2017 Another potential concern is that of efficiency, such as avoiding Duplicate Address Detection (DAD) altogether when IPv6 addresses are based on IEEE identifiers. Appendix A of [RFC 4429] provides an analysis of address-collision probability based on the number of bits of entropy. A simple web search on "duplicate MAC addresses" will show that collisions do happen with MAC addresses; thus, based on the analysis in [RFC 4429], using sufficient bits of entropy in random addresses can provide greater protection against collision than using MAC addresses. 3.2. Short Addresses A routable IPv6 address with an interface identifier formed from the combination of a "Short Address" and a set of well-known constant bits (such as padding with 0's) lacks sufficient entropy to mitigate address scanning unless the link lifetime is extremely short. Furthermore, an adversary could also use statistical methods to determine the size of the L2 address space and thereby make some inference regarding the underlying technology on a given link, and target further attacks accordingly. When Short Addresses are desired on links that are not guaranteed to have a short enough lifetime, the mechanism for constructing an IPv6 interface identifier from a Short Address could be designed to sufficiently mitigate the problem. For example, if all nodes on a given L2 network have a shared secret (such as the key needed to get on the layer-2 network), the 64-bit IID might be generated using a one-way hash that includes (at least) the shared secret together with the Short Address. The use of such a hash would result in the IIDs being spread out among the full range of IID address space, thus mitigating address scans while still allowing full stateless compression/elision. For long-lived links, "temporary" addresses might even be generated in the same way by (for example) also including in the hash the Version Number from the Authoritative Border Router Option (Section 4.3 of [RFC 6775]), if any. This would allow changing temporary addresses whenever the Version Number is changed, even if the set of prefix or context information is unchanged. In summary, any specification using Short Addresses should carefully construct an IID generation mechanism so as to provide sufficient entropy compared to the link lifetime. Thaler Informational PAGE 6 top

RFC 8065 IPv6-over-foo Privacy Considerations February 2017 4. Recommendations The following are recommended for adaptation-layer specifications: o Security (privacy) sections should say how address scans are mitigated. An address scan might be mitigated by having a link always be short-lived, by having a large number of bits of entropy in routable addresses, or by some combination thereof. Thus, a specification should explain what the maximum lifetime of a link is in practice and show how the number of bits of entropy is sufficient given that lifetime. o Technologies should define a way to include sufficient bits of entropy in the IPv6 interface identifier, based on the maximum link lifetime. Specifying that randomized link-layer addresses can be used is one easy way to do so, for technologies that support such identifiers. o Specifications should not simply construct an IPv6 interface identifier by padding a Short Address with a set of other well- known constant bits, unless the link lifetime is guaranteed to be extremely short or the Short Address is allocated by the network (rather than being constant in the node). This also applies to link-local addresses if the same Short Address is used independent of network and is unique enough to allow location tracking. o Specifications should make sure that an IPv6 address can change over long periods of time. For example, the interface identifier might change each time a device connects to the network (if connections are short) or might change each day (if connections can be long). This is necessary to mitigate correlation over time. o If a device can roam between networks and more than a few bits of entropy exist in the IPv6 interface identifier, then make sure that the interface identifier can vary per network as the device roams. This is necessary to mitigate location tracking. 5. Security Considerations This entire document is about security considerations and how to specify possible mitigations. Thaler Informational PAGE 7 top

RFC 8065 IPv6-over-foo Privacy Considerations February 2017 6. Informative References [BTCorev4.1] Bluetooth, "Specification of the Bluetooth System", Covered Core Package version: 4.1, December 2013, <https://www.bluetooth.org/DocMan/handlers/ DownloadDoc.ashx?doc_id=282159>. [DECT-ULE] Mariager, P., Petersen, J., Ed., Shelby, Z., Van de Logt, M., and D. Barthel, "Transmission of IPv6 Packets over DECT Ultra Low Energy", draft-ietf-6lo-dect-ule-09, Work in Progress, December 2016. [IPv6-over-MSTP] Lynn, K., Ed., Martocci, J., Neilson, C., and S. Donaldson, "Transmission of IPv6 over MS/TP Networks", draft-ietf-6lo-6lobac-06, Work in Progress, October 2016. [IPv6-over-NFC] Choi, Y-H., Hong, Y-G., Youn, J-S., Kim, D-K., and J-H. Choi, "Transmission of IPv6 Packets over Near Field Communication", draft-ietf-6lo-nfc-05, Work in Progress, October 2016. [RANDOM-ADDR] Huitema, C., "Implications of Randomized Link Layers Addresses for IPv6 Address Assignment", draft-huitema-6man-random-addresses-03, Work in Progress, March 2016. [RFC 3972] Aura, T., "Cryptographically Generated Addresses (CGA)", RFC 3972, DOI 10.17487/RFC 3972, March 2005, <http://www.rfc-editor.org/info/RFC 3972>. [RFC 4429] Moore, N., "Optimistic Duplicate Address Detection (DAD) for IPv6", RFC 4429, DOI 10.17487/RFC 4429, April 2006, <http://www.rfc-editor.org/info/RFC 4429>. [RFC 4941] Narten, T., Draves, R., and S. Krishnan, "Privacy Extensions for Stateless Address Autoconfiguration in IPv6", RFC 4941, DOI 10.17487/RFC 4941, September 2007, <http://www.rfc-editor.org/info/RFC 4941>. [RFC 4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks", RFC 4944, DOI 10.17487/RFC 4944, September 2007, <http://www.rfc-editor.org/info/RFC 4944>. Thaler Informational PAGE 8 top

RFC 8065 IPv6-over-foo Privacy Considerations February 2017 [RFC 5535] Bagnulo, M., "Hash-Based Addresses (HBA)", RFC 5535, DOI 10.17487/RFC 5535, June 2009, <http://www.rfc-editor.org/info/RFC 5535>. [RFC 6282] Hui, J., Ed., and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282, DOI 10.17487/RFC 6282, September 2011, <http://www.rfc-editor.org/info/RFC 6282>. [RFC 6724] Thaler, D., Ed., Draves, R., Matsumoto, A., and T. Chown, "Default Address Selection for Internet Protocol Version 6 (IPv6)", RFC 6724, DOI 10.17487/RFC 6724, September 2012, <http://www.rfc-editor.org/info/RFC 6724>. [RFC 6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C. Bormann, "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)", RFC 6775, DOI 10.17487/RFC 6775, November 2012, <http://www.rfc-editor.org/info/RFC 6775>. [RFC 6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J., Morris, J., Hansen, M., and R. Smith, "Privacy Considerations for Internet Protocols", RFC 6973, DOI 10.17487/RFC 6973, July 2013, <http://www.rfc-editor.org/info/RFC 6973>. [RFC 7217] Gont, F., "A Method for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Autoconfiguration (SLAAC)", RFC 7217, DOI 10.17487/RFC 7217, April 2014, <http://www.rfc-editor.org/info/RFC 7217>. [RFC 7288] Thaler, D., "Reflections on Host Firewalls", RFC 7288, DOI 10.17487/RFC 7288, June 2014, <http://www.rfc-editor.org/info/RFC 7288>. [RFC 7421] Carpenter, B., Ed., Chown, T., Gont, F., Jiang, S., Petrescu, A., and A. Yourtchenko, "Analysis of the 64-bit Boundary in IPv6 Addressing", RFC 7421, DOI 10.17487/RFC 7421, January 2015, <http://www.rfc-editor.org/info/RFC 7421>. [RFC 7428] Brandt, A. and J. Buron, "Transmission of IPv6 Packets over ITU-T G.9959 Networks", RFC 7428, DOI 10.17487/RFC 7428, February 2015, <http://www.rfc-editor.org/info/RFC 7428>. Thaler Informational PAGE 9 top

RFC 8065 IPv6-over-foo Privacy Considerations February 2017 [RFC 7668] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., Shelby, Z., and C. Gomez, "IPv6 over BLUETOOTH(R) Low Energy", RFC 7668, DOI 10.17487/RFC 7668, October 2015, <http://www.rfc-editor.org/info/RFC 7668>. [RFC 7721] Cooper, A., Gont, F., and D. Thaler, "Security and Privacy Considerations for IPv6 Address Generation Mechanisms", RFC 7721, DOI 10.17487/RFC 7721, March 2016, <http://www.rfc-editor.org/info/RFC 7721>. [RFC 8064] Gont, F., Cooper, A., Thaler, D., and W. Liu, "Recommendation on Stable IPv6 Interface Identifiers", RFC 8064, February 2017, <http://www.rfc-editor.org/info/RFC 8064>. Author's Address Dave Thaler Microsoft One Microsoft Way Redmond, WA 98052 United States of America Email: dthaler@microsoft.com Thaler Informational PAGE 10 top

RFC TOTAL SIZE: 22718 bytes PUBLICATION DATE: Wednesday, February 22nd, 2017 LEGAL RIGHTS: The IETF Trust (see BCP 78)


RFC-ARCHIVE.ORG

© RFC 8065: The IETF Trust, Wednesday, February 22nd, 2017
© the RFC Archive, 2024, RFC-Archive.org
Maintainer: J. Tunnissen

Privacy Statement