|
|
|
|
|
IETF RFC 6931
Last modified on Thursday, April 18th, 2013
Permanent link to RFC 6931
Search GitHub Wiki for RFC 6931
Show other RFCs mentioning RFC 6931
Internet Engineering Task Force (IETF) D. Eastlake 3rd
Request for Comments: 6931 Huawei
Obsoletes: 4051 April 2013
Category: Standards Track
ISSN: 2070-1721
Additional XML Security Uniform Resource Identifiers (URIs)
Abstract
This document expands, updates, and establishes an IANA registry for
the list of URIs intended for use with XML digital signatures,
encryption, canonicalization, and key management. These URIs
identify algorithms and types of information. This document
obsoletes RFC 4051.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/RFC 6931.
Copyright Notice
Copyright (c) 2013 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Eastlake Standards Track PAGE 1
RFC 6931 Additional XML Security URIs April 2013
Table of Contents
1. Introduction ....................................................3
1.1. Terminology ................................................4
1.2. Acronyms ...................................................4
2. Algorithms ......................................................5
2.1. DigestMethod (Hash) Algorithms .............................5
2.1.1. MD5 .................................................5
2.1.2. SHA-224 .............................................6
2.1.3. SHA-384 .............................................6
2.1.4. Whirlpool ...........................................6
2.1.5. New SHA Functions ...................................7
2.2. SignatureMethod MAC Algorithms .............................7
2.2.1. HMAC-MD5 ............................................7
2.2.2. HMAC SHA Variations .................................8
2.2.3. HMAC-RIPEMD160 ......................................8
2.3. SignatureMethod Public-Key Signature Algorithms ............9
2.3.1. RSA-MD5 .............................................9
2.3.2. RSA-SHA256 .........................................10
2.3.3. RSA-SHA384 .........................................10
2.3.4. RSA-SHA512 .........................................10
2.3.5. RSA-RIPEMD160 ......................................11
2.3.6. ECDSA-SHA*, ECDSA-RIPEMD160, ECDSA-Whirlpool .......11
2.3.7. ESIGN-SHA* .........................................12
2.3.8. RSA-Whirlpool ......................................12
2.3.9. RSASSA-PSS with Parameters .........................13
2.3.10. RSASSA-PSS without Parameters .....................14
2.3.11. RSA-SHA224 ........................................15
2.4. Minimal Canonicalization ..................................15
2.5. Transform Algorithms ......................................16
2.5.1. XPointer ...........................................16
2.6. EncryptionMethod Algorithms ...............................17
2.6.1. ARCFOUR Encryption Algorithm .......................17
2.6.2. Camellia Block Encryption ..........................17
2.6.3. Camellia Key Wrap ..................................17
2.6.4. PSEC-KEM ...........................................18
2.6.5. SEED Block Encryption ..............................19
2.6.6. SEED Key Wrap ......................................19
3. KeyInfo ........................................................19
3.1. PKCS #7 Bag of Certificates and CRLs ......................20
3.2. Additional RetrievalMethod Type Values ....................20
4. Indexes ........................................................20
4.1. Fragment Index ............................................21
4.2. URI Index .................................................24
5. Allocation Considerations ......................................27
5.1. W3C Allocation Considerations .............................27
5.2. IANA Considerations .......................................28
6. Security Considerations ........................................28
Eastlake Standards Track PAGE 2
RFC 6931 Additional XML Security URIs April 2013
7. Acknowledgements ...............................................29
Appendix A. Changes from RFC 4051 .................................30
Normative References ..............................................31
Informative References ............................................33
1. Introduction
XML digital signatures, canonicalization, and encryption have been
standardized by the W3C and by the joint IETF/W3C XMLDSIG working
group [W3C]. All of these are now W3C Recommendations and some are
also RFCs. They are available as follows:
RFC
Status W3C REC Topic
----------- ------- -----
[RFC 3275] [XMLDSIG10] XML Digital Signatures
Draft Standard
[RFC 3076] [CANON10] Canonical XML
Informational
- - - - - - [XMLENC10] XML Encryption 1.0
[RFC 3741] [XCANON] Exclusive XML Canonicalization 1.0
Informational
All of these documents and recommendations use URIs [RFC 3986] to
identify algorithms and keying information types. The W3C has
subsequently produced updated XML Signature 1.1 [XMLDSIG11],
Canonical XML 1.1 [CANON11], and XML Encryption 1.1 [XMLENC11]
versions, as well as a new XML Signature Properties specification
[XMLDSIG-PROP].
All camel-case element names herein, such as DigestValue, are from
these documents.
This document is an updated convenient reference list of URIs and
corresponding algorithms in which there is expressed interest. Since
the previous list [RFC 4051] was issued in 2005, significant new
cryptographic algorithms of interest to XML security, for some of
which the URI is only specified in this document, have been added.
This document obsoletes [RFC 4051]. All of the URIs appear in the
indexes in Section 4. Only the URIs that were added by [RFC 4051] or
this document have a subsection in Section 2 or 3, with the exception
of Minimal Canonicalization (Section 2.4), for example, use of
Eastlake Standards Track PAGE 3
RFC 6931 Additional XML Security URIs April 2013
SHA-256 is defined in [XMLENC11] and hence there is no subsection on
that algorithm here, but its URI is included in the indexes in
Section 4.
Specification in this document of the URI representing an algorithm
does not imply endorsement of the algorithm for any particular
purpose. A protocol specification, which this is not, generally
gives algorithm and implementation requirements for the protocol.
Security considerations for algorithms are constantly evolving, as
documented elsewhere. This specification simply provides some URIs
and relevant formatting for when those URIs are used.
Note that progressing XML Digital Signature [RFC 3275] along the
Standards Track required removal of any algorithms from the original
version [RFC 3075] for which there was not demonstrated
interoperability. This required removal of the Minimal
Canonicalization algorithm, in which there appears to be continued
interest. The URI for Minimal Canonicalization was included in
[RFC 4051] and is included here.
1.1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
[RFC 2119].
This document is not intended to change the algorithm implementation
requirements of any IETF or W3C document. Use of [RFC 2119]
terminology is intended to be only such as is already stated or
implied by other authoritative documents.
1.2. Acronyms
The following acronyms are used in this document:
HMAC - Keyed-Hashing MAC [RFC 2104]
IETF - Internet Engineering Task Force <www.ietf.org>
MAC - Message Authentication Code
MD - Message Digest
NIST - United States National Institute of Standards and Technology
<www.nist.gov>
RC - Rivest Cipher
Eastlake Standards Track PAGE 4
RFC 6931 Additional XML Security URIs April 2013
RSA - Rivest, Shamir, and Adleman
SHA - Secure Hash Algorithm
URI - Uniform Resource Identifier [RFC 3986]
W3C - World Wide Web Consortium <www.w3.org>
XML - eXtensible Markup Language
2. Algorithms
The URI [RFC 3986] that was dropped from the XML Digital Signature
standard due to the transition from Proposed Standard to Draft
Standard [RFC 3275] is included in Section 2.4 below with its original
http://www.w3.org/2000/09/xmldsig#
prefix so as to avoid changing the XMLDSIG standard's namespace.
Additional algorithms in [RFC 4051] were given URIs that start with
http://www.w3.org/2001/04/xmldsig-more#
while further algorithms added in this document are given URIs that
start with
http://www.w3.org/2007/05/xmldsig-more#
In addition, for ease of reference, this document includes in the
indexes in Section 4 many cryptographic algorithm URIs from several
XML security documents using the namespaces with which they are
defined in those documents. For example, 2000/09/xmldsig# for some
URIs specified in [RFC 3275] and 2001/04/xmlenc# for some URIs
specified in [XMLENC10].
See also [XMLSECXREF].
2.1. DigestMethod (Hash) Algorithms
These algorithms are usable wherever a DigestMethod element occurs.
2.1.1. MD5
Identifier:
http://www.w3.org/2001/04/xmldsig-more#md5
Eastlake Standards Track PAGE 5
RFC 6931 Additional XML Security URIs April 2013
The MD5 algorithm [RFC 1321] takes no explicit parameters. An example
of an MD5 DigestAlgorithm element is:
<DigestAlgorithm
Algorithm="http://www.w3.org/2001/04/xmldsig-more#md5"/>
An MD5 digest is a 128-bit string. The content of the DigestValue
element SHALL be the base64 [RFC 2045] encoding of this bit string
viewed as a 16-octet stream. See [RFC 6151] for MD5 security
considerations.
2.1.2. SHA-224
Identifier:
http://www.w3.org/2001/04/xmldsig-more#sha224
The SHA-224 algorithm [FIPS180-4] [RFC 6234] takes no explicit
parameters. An example of a SHA-224 DigestAlgorithm element is:
<DigestAlgorithm
Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha224" />
A SHA-224 digest is a 224-bit string. The content of the DigestValue
element SHALL be the base64 [RFC 2045] encoding of this string viewed
as a 28-octet stream.
2.1.3. SHA-384
Identifier:
http://www.w3.org/2001/04/xmldsig-more#sha384
The SHA-384 algorithm [FIPS180-4] takes no explicit parameters. An
example of a SHA-384 DigestAlgorithm element is:
<DigestAlgorithm
Algorithm="http://www.w3.org/2001/04/xmldsig-more#sha384" />
A SHA-384 digest is a 384-bit string. The content of the DigestValue
element SHALL be the base64 [RFC 2045] encoding of this string viewed
as a 48-octet stream.
2.1.4. Whirlpool
Identifier:
http://www.w3.org/2007/05/xmldsig-more#whirlpool
Eastlake Standards Track PAGE 6
RFC 6931 Additional XML Security URIs April 2013
The Whirlpool algorithm [10118-3] takes no explicit parameters. A
Whirlpool digest is a 512-bit string. The content of the DigestValue
element SHALL be the base64 [RFC 2045] encoding of this string viewed
as a 64-octet stream.
2.1.5. New SHA Functions
Identifiers:
http://www.w3.org/2007/05/xmldsig-more#sha3-224
http://www.w3.org/2007/05/xmldsig-more#sha3-256
http://www.w3.org/2007/05/xmldsig-more#sha3-384
http://www.w3.org/2007/05/xmldsig-more#sha3-512
NIST has recently completed a hash function competition for an
alternative to the SHA family. The Keccak-f[1600] algorithm was
selected [Keccak] [SHA-3]. This hash function is commonly referred
to as "SHA-3", and this section is a space holder and reservation of
URIs for future information on Keccak use in XML security.
A SHA-3 224, 256, 384, and 512 digest is a 224-, 256-, 384-, and
512-bit string, respectively. The content of the DigestValue element
SHALL be the base64 [RFC 2045] encoding of this string viewed as a
28-, 32-, 48-, and 64-octet stream, respectively.
2.2. SignatureMethod MAC Algorithms
This section covers SignatureMethod MAC (Message Authentication Code)
Algorithms.
Note: Some text in this section is duplicated from [RFC 3275] for the
convenience of the reader. RFC 3275 is normative in case of
conflict.
2.2.1. HMAC-MD5
Identifier:
http://www.w3.org/2001/04/xmldsig-more#hmac-md5
The HMAC algorithm [RFC 2104] takes the truncation length in bits as a
parameter; if the parameter is not specified, then all the bits of
the hash are output. An example of an HMAC-MD5 SignatureMethod
element is as follows:
<SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#hmac-md5">
<HMACOutputLength>112</HMACOutputLength>
</SignatureMethod>
Eastlake Standards Track PAGE 7
RFC 6931 Additional XML Security URIs April 2013
The output of the HMAC algorithm is ultimately the output (possibly
truncated) of the chosen digest algorithm. This value SHALL be
base64 [RFC 2045] encoded in the same straightforward fashion as the
output of the digest algorithms. Example: the SignatureValue element
for the HMAC-MD5 digest
9294727A 3638BB1C 13F48EF8 158BFC9D
from the test vectors in [RFC 2104] would be
kpRyejY4uxwT9I74FYv8nQ==
Schema Definition:
<simpleType name="HMACOutputLength">
<restriction base="integer"/>
</simpleType>
DTD:
<!ELEMENT HMACOutputLength (#PCDATA) >
The Schema Definition and DTD immediately above are copied from
[RFC 3275].
See [RFC 6151] for HMAC-MD5 security considerations.
2.2.2. HMAC SHA Variations
Identifiers:
http://www.w3.org/2001/04/xmldsig-more#hmac-sha224
http://www.w3.org/2001/04/xmldsig-more#hmac-sha256
http://www.w3.org/2001/04/xmldsig-more#hmac-sha384
http://www.w3.org/2001/04/xmldsig-more#hmac-sha512
SHA-224, SHA-256, SHA-384, and SHA-512 [FIPS180-4] [RFC 6234] can also
be used in HMAC as described in Section 2.2.1 above for HMAC-MD5.
2.2.3. HMAC-RIPEMD160
Identifier:
http://www.w3.org/2001/04/xmldsig-more#hmac-ripemd160
RIPEMD-160 [10118-3] can also be used in HMAC as described in Section
2.2.1 above for HMAC-MD5.
Eastlake Standards Track PAGE 8
RFC 6931 Additional XML Security URIs April 2013
2.3. SignatureMethod Public-Key Signature Algorithms
These algorithms are distinguished from those in Section 2.2 above in
that they use public-key methods. That is to say, the verification
key is different from and not feasibly derivable from the signing
key.
2.3.1. RSA-MD5
Identifier:
http://www.w3.org/2001/04/xmldsig-more#rsa-md5
This implies the PKCS#1 v1.5 padding algorithm described in
[RFC 3447]. An example of use is
<SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-md5" />
The SignatureValue content for an RSA-MD5 signature is the base64
[RFC 2045] encoding of the octet string computed as per [RFC 3447],
Section 8.2.1, signature generation for the RSASSA-PKCS1-v1_5
signature scheme. As specified in the EMSA-PKCS1-V1_5-ENCODE
function in [RFC 3447], Section 9.2, the value input to the signature
function MUST contain a pre-pended algorithm object identifier for
the hash function, but the availability of an ASN.1 parser and
recognition of OIDs is not required of a signature verifier. The
PKCS#1 v1.5 representation appears as:
CRYPT (PAD (ASN.1 (OID, DIGEST (data))))
Note that the padded ASN.1 will be of the following form:
01 | FF* | 00 | prefix | hash
Vertical bar ("|") represents concatenation. "01", "FF", and "00"
are fixed octets of the corresponding hexadecimal value, and the
asterisk ("*") after "FF" indicates repetition. "hash" is the MD5
digest of the data. "prefix" is the ASN.1 BER MD5 algorithm
designator prefix required in PKCS #1 [RFC 3447], that is,
hex 30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10
This prefix is included to make it easier to use standard
cryptographic libraries. The FF octet MUST be repeated enough times
that the value of the quantity being CRYPTed is exactly one octet
shorter than the RSA modulus.
See [RFC 6151] for MD5 security considerations.
Eastlake Standards Track PAGE 9
RFC 6931 Additional XML Security URIs April 2013
2.3.2. RSA-SHA256
Identifier:
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
This implies the PKCS#1 v1.5 padding algorithm [RFC 3447] as described
in Section 2.3.1, but with the ASN.1 BER SHA-256 algorithm designator
prefix. An example of use is
<SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"
/>
2.3.3. RSA-SHA384
Identifier:
http://www.w3.org/2001/04/xmldsig-more#rsa-sha384
This implies the PKCS#1 v1.5 padding algorithm [RFC 3447] as described
in Section 2.3.1, but with the ASN.1 BER SHA-384 algorithm designator
prefix. An example of use is
<SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha384" />
Because it takes about the same effort to calculate a SHA-384 message
digest as it does a SHA-512 message digest, it is suggested that
RSA-SHA512 be used in preference to RSA-SHA384 where possible.
2.3.4. RSA-SHA512
Identifier:
http://www.w3.org/2001/04/xmldsig-more#rsa-sha512
This implies the PKCS#1 v1.5 padding algorithm [RFC 3447] as described
in Section 2.3.1, but with the ASN.1 BER SHA-512 algorithm designator
prefix. An example of use is
<SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha512" />
Eastlake Standards Track PAGE 10
RFC 6931 Additional XML Security URIs April 2013
2.3.5. RSA-RIPEMD160
Identifier:
http://www.w3.org/2001/04/xmldsig-more#rsa-ripemd160
This implies the PKCS#1 v1.5 padding algorithm [RFC 3447] as described
in Section 2.3.1, but with the ASN.1 BER RIPEMD160 algorithm
designator prefix. An example of use is
<SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-ripemd160"
/>
2.3.6. ECDSA-SHA*, ECDSA-RIPEMD160, ECDSA-Whirlpool
Identifiers:
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
http://www.w3.org/2007/05/xmldsig-more#ecdsa-ripemd160
http://www.w3.org/2007/05/xmldsig-more#ecdsa-whirlpool
The Elliptic Curve Digital Signature Algorithm (ECDSA) [FIPS180-4] is
the elliptic curve analogue of the Digital Signature Algorithm (DSA)
signature method, i.e., the Digital Signature Standard (DSS). It
takes no explicit parameters. For detailed specifications of how to
use it with SHA hash functions and XML Digital Signature, please see
[X9.62] and [RFC 4050]. The #ecdsa-ripemd160 and #ecdsa-whirlpool
fragments in the new namespace identifies a signature method
processed in the same way as specified by the #ecdsa-sha1 fragment of
this namespace, with the exception that RIPEMD160 or Whirlpool is
used instead of SHA-1.
The output of the ECDSA algorithm consists of a pair of integers
usually referred by the pair (r, s). The signature value consists of
the base64 encoding of the concatenation of two octet streams that
respectively result from the octet-encoding of the values r and s in
that order. Conversion from integer to octet stream must be done
according to the I2OSP operation defined in the [RFC 3447]
specification with the l parameter equal to the size of the base
point order of the curve in bytes (e.g., 32 for the P-256 curve and
66 for the P-521 curve [FIPS186-3]).
For an introduction to elliptic curve cryptographic algorithms, see
[RFC 6090] and note the errata (Errata ID 2773-2777).
Eastlake Standards Track PAGE 11
RFC 6931 Additional XML Security URIs April 2013
2.3.7. ESIGN-SHA*
Identifiers:
http://www.w3.org/2001/04/xmldsig-more#esign-sha1
http://www.w3.org/2001/04/xmldsig-more#esign-sha224
http://www.w3.org/2001/04/xmldsig-more#esign-sha256
http://www.w3.org/2001/04/xmldsig-more#esign-sha384
http://www.w3.org/2001/04/xmldsig-more#esign-sha512
The ESIGN algorithm specified in [IEEEP1363a] is a signature scheme
based on the integer factorization problem. It is much faster than
previous digital signature schemes, so ESIGN can be implemented on
smart cards without special co-processors.
An example of use is
<SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#esign-sha1"
/>
2.3.8. RSA-Whirlpool
Identifier:
http://www.w3.org/2007/05/xmldsig-more#rsa-whirlpool
As in the definition of the RSA-SHA1 algorithm in [XMLDSIG11], the
designator "RSA" means the RSASSA-PKCS1-v1_5 algorithm as defined in
[RFC 3447]. When identified through the #rsa-whirlpool fragment
identifier, Whirlpool is used as the hash algorithm instead. Use of
the ASN.1 BER Whirlpool algorithm designator is implied. That
designator is
hex 30 4e 30 0a 06 06 28 cf 06 03 00 37 05 00 04 40
as an explicit octet sequence. This corresponds to OID
1.0.10118.3.0.55 defined in [10118-3].
An example of use is
<SignatureMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-whirlpool"
/>
Eastlake Standards Track PAGE 12
RFC 6931 Additional XML Security URIs April 2013
2.3.9. RSASSA-PSS with Parameters
Identifiers:
http://www.w3.org/2007/05/xmldsig-more#rsa-pss
http://www.w3.org/2007/05/xmldsig-more#MGF1
These identifiers imply the PKCS#1 EMSA-PSS encoding algorithm
[RFC 3447]. The RSASSA-PSS algorithm takes the digest method (hash
function), a mask generation function, the salt length in bytes
(SaltLength), and the trailer field as explicit parameters.
Algorithm identifiers for hash functions specified in XML encryption
[XMLENC11] [XMLDSIG11] and in Section 2.1 are considered to be valid
algorithm identifiers for hash functions. According to [RFC 3447],
the default value for the digest function is SHA-1, but due to the
discovered weakness of SHA-1 [RFC 6194], it is recommended that
SHA-256 or a stronger hash function be used. Notwithstanding
[RFC 3447], SHA-256 is the default to be used with these
SignatureMethod identifiers if no hash function has been specified.
The default salt length for these SignatureMethod identifiers if the
SaltLength is not specified SHALL be the number of octets in the hash
value of the digest method, as recommended in [RFC 4055]. In a
parameterized RSASSA-PSS signature the ds:DigestMethod and the
SaltLength parameters usually appear. If they do not, the defaults
make this equivalent to
http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1 (see Section
2.3.10). The TrailerField defaults to 1 (0xBC) when omitted.
Eastlake Standards Track PAGE 13
RFC 6931 Additional XML Security URIs April 2013
Schema Definition (target namespace
http://www.w3.org/2007/05/xmldsig-more#):
<xs:element name="RSAPSSParams" type="pss:RSAPSSParamsType">
<xs:annotation>
<xs:documentation>
Top level element that can be used in xs:any namespace="#other"
wildcard of ds:SignatureMethod content.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="RSAPSSParamsType">
<xs:sequence>
<xs:element ref="ds:DigestMethod" minOccurs="0"/>
<xs:element name="MaskGenerationFunction"
type="pss:MaskGenerationFunctionType" minOccurs="0"/>
<xs:element name="SaltLength" type="xs:int"
minOccurs="0"/>
<xs:element name="TrailerField" type="xs:int"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="MaskGenerationFunctionType">
<xs:sequence>
<xs:element ref="ds:DigestMethod" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="Algorithm" type="xs:anyURI"
default="http://www.w3.org/2007/05/xmldsig-more#MGF1"/>
</xs:complexType>
2.3.10. RSASSA-PSS without Parameters
[RFC 3447] currently specifies only one mask generation function MGF1
based on a hash function. Although [RFC 3447] allows for
parameterization, the default is to use the same hash function as the
digest method function. Only this default approach is supported by
this section; therefore, the definition of a mask generation function
type is not needed yet. The same applies to the trailer field.
There is only one value (0xBC) specified in [RFC 3447]. Hence, this
default parameter must be used for signature generation. The default
salt length is the length of the hash function.
Identifiers:
http://www.w3.org/2007/05/xmldsig-more#sha3-224-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha3-256-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha3-384-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha3-512-rsa-MGF1
Eastlake Standards Track PAGE 14
RFC 6931 Additional XML Security URIs April 2013
http://www.w3.org/2007/05/xmldsig-more#md2-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#md5-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha1-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha224-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha384-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#sha512-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#ripemd128-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#ripemd160-rsa-MGF1
http://www.w3.org/2007/05/xmldsig-more#whirlpool-rsa-MGF1
An example of use is
<SignatureMethod
Algorithm=
"http://www.w3.org/2007/05/xmldsig-more#SHA3-256-rsa-MGF1"
/>
2.3.11. RSA-SHA224
Identifier:
http://www.w3.org/2007/05/xmldsig-more#rsa-sha224
This implies the PKCS#1 v1.5 padding algorithm [RFC 3447] as described
in Section 2.3.1, but with the ASN.1 BER SHA-224 algorithm designator
prefix. An example of use is
<SignatureMethod
Algorithm="http://www.w3.org/2007/05/xmldsig-more#rsa-sha224" />
Because it takes about the same effort to calculate a SHA-224 message
digest as it does a SHA-256 message digest, it is suggested that
RSA-SHA256 be used in preference to RSA-SHA224 where possible.
2.4. Minimal Canonicalization
Thus far, two independent interoperable implementations of Minimal
Canonicalization have not been announced. Therefore, when XML
Digital Signature was advanced along the Standards Track from
[RFC 3075] to [RFC 3275], Minimal Canonicalization was dropped.
However, there is still interest. For its definition, see Section
6.5.1 of [RFC 3075].
For reference, its identifier remains:
http://www.w3.org/2000/09/xmldsig#minimal
Eastlake Standards Track PAGE 15
RFC 6931 Additional XML Security URIs April 2013
2.5. Transform Algorithms
Note that all CanonicalizationMethod algorithms can also be used as
transform algorithms.
2.5.1. XPointer
Identifier:
http://www.w3.org/2001/04/xmldsig-more#xptr
This transform algorithm takes an [XPointer] as an explicit
parameter. An example of use is:
<Transform
Algorithm="http://www.w3.org/2001/04/xmldsig-more/xptr">
<XPointer
xmlns="http://www.w3.org/2001/04/xmldsig-more/xptr">
xpointer(id("foo")) xmlns(bar=http://foobar.example)
xpointer(//bar:Zab[@Id="foo"])
</XPointer>
</Transform>
Schema Definition:
<element name="XPointer" type="string"/>
DTD:
<!ELEMENT XPointer (#PCDATA) >
Input to this transform is an octet stream (which is then parsed into
XML).
Output from this transform is a node set; the results of the XPointer
are processed as defined in the XMLDSIG specification [RFC 3275] for a
same-document XPointer.
Eastlake Standards Track PAGE 16
RFC 6931 Additional XML Security URIs April 2013
2.6. EncryptionMethod Algorithms
This subsection gives identifiers and information for several
EncryptionMethod Algorithms.
2.6.1. ARCFOUR Encryption Algorithm
Identifier:
http://www.w3.org/2001/04/xmldsig-more#arcfour
ARCFOUR is a fast, simple stream encryption algorithm that is
compatible with RSA Security's RC4 algorithm [RC4]. An example
EncryptionMethod element using ARCFOUR is
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmldsig-more#arcfour">
<KeySize>40</KeySize>
</EncryptionMethod>
Note that Arcfour makes use of the generic KeySize parameter
specified and defined in [XMLENC11].
2.6.2. Camellia Block Encryption
Identifiers:
http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc
http://www.w3.org/2001/04/xmldsig-more#camellia192-cbc
http://www.w3.org/2001/04/xmldsig-more#camellia256-cbc
Camellia is a block cipher with the same interface as the AES
[Camellia] [RFC 3713]; it has a 128-bit block size and 128-, 192-, and
256-bit key sizes. In XML encryption, Camellia is used in the same
way as the AES: it is used in the Cipher Block Chaining (CBC) mode
with a 128-bit initialization vector (IV). The resulting cipher text
is prefixed by the IV. If included in XML output, it is then base64
encoded. An example Camellia EncryptionMethod is as follows:
<EncryptionMethod
Algorithm=
"http://www.w3.org/2001/04/xmldsig-more#camellia128-cbc"
/>
2.6.3. Camellia Key Wrap
Identifiers:
http://www.w3.org/2001/04/xmldsig-more#kw-camellia128
http://www.w3.org/2001/04/xmldsig-more#kw-camellia192
http://www.w3.org/2001/04/xmldsig-more#kw-camellia256
Eastlake Standards Track PAGE 17
RFC 6931 Additional XML Security URIs April 2013
Camellia [Camellia] [RFC 3713] key wrap is identical to the AES key
wrap algorithm [RFC 3394] specified in the XML Encryption standard
with "AES" replaced by "Camellia". As with AES key wrap, the check
value is 0xA6A6A6A6A6A6A6A6.
The algorithm is the same whatever the size of the Camellia key used
in wrapping, called the "key encrypting key" or "KEK". If Camellia
is supported, it is particularly suggested that wrapping 128-bit keys
with a 128-bit KEK and wrapping 256-bit keys with a 256-bit KEK be
supported.
An example of use is:
<EncryptionMethod
Algorithm=
"http://www.w3.org/2001/04/xmldsig-more#kw-camellia128"
/>
2.6.4. PSEC-KEM
Identifier:
http://www.w3.org/2001/04/xmldsig-more#psec-kem
The PSEC-KEM algorithm, specified in [18033-2], is a key
encapsulation mechanism using elliptic curve encryption.
An example of use is:
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#psec-kem">
<ECParameters>
<Version>version</Version>
<FieldID>id</FieldID>
<Curve>curve</Curve>
<Base>base</Base>
<Order>order</Order>
<Cofactor>cofactor</Cofactor>
</ECParameters>
</EncryptionMethod>
See [18033-2] for information on the parameters above.
Eastlake Standards Track PAGE 18
RFC 6931 Additional XML Security URIs April 2013
2.6.5. SEED Block Encryption
Identifier:
http://www.w3.org/2007/05/xmldsig-more#seed128-cbc
SEED [RFC 4269] is a 128-bit block size with 128-bit key sizes. In
XML Encryption, SEED can be used in the Cipher Block Chaining (CBC)
mode with a 128-bit initialization vector (IV). The resulting cipher
text is prefixed by the IV. If included in XML output, it is then
base64 encoded.
An example SEED EncryptionMethod is as follows:
<EncryptionMethod
Algorithm="http://www.w3.org/2007/05/xmldsig-more#seed128-cbc" />
2.6.6. SEED Key Wrap
Identifier:
http://www.w3.org/2007/05/xmldsig-more#kw-seed128
Key wrapping with SEED is identical to Section 2.2.1 of [RFC 3394]
with "AES" replaced by "SEED". The algorithm is specified in
[RFC 4010]. The implementation of SEED is optional. The default
initial value is 0xA6A6A6A6A6A6A6A6.
An example of use is:
<EncryptionMethod
Algorithm=
"http://www.w3.org/2007/05/xmldsig-more#kw-seed128"
/>
3. KeyInfo
In Section 3.1 below a new KeyInfo element child is specified, while
in Section 3.2 additional KeyInfo Type values for use in
RetrievalMethod are specified.
Eastlake Standards Track PAGE 19
RFC 6931 Additional XML Security URIs April 2013
3.1. PKCS #7 Bag of Certificates and CRLs
A PKCS #7 [RFC 2315] "signedData" can also be used as a bag of
certificates and/or certificate revocation lists (CRLs). The
PKCS7signedData element is defined to accommodate such structures
within KeyInfo. The binary PKCS #7 structure is base64 [RFC 2045]
encoded. Any signer information present is ignored. The following
is an example [RFC 3092], eliding the base64 data:
<foo:PKCS7signedData
xmlns:foo="http://www.w3.org/2001/04/xmldsig-more">
...
</foo:PKCS7signedData>
3.2. Additional RetrievalMethod Type Values
The Type attribute of RetrievalMethod is an optional identifier for
the type of data to be retrieved. The result of dereferencing a
RetrievalMethod reference for all KeyInfo types with an XML structure
is an XML element or document with that element as the root. The
various "raw" key information types return a binary value. Thus,
they require a Type attribute because they are not unambiguously
parsable.
Identifiers:
http://www.w3.org/2001/04/xmldsig-more#KeyName
http://www.w3.org/2001/04/xmldsig-more#KeyValue
http://www.w3.org/2001/04/xmldsig-more#PKCS7signedData
http://www.w3.org/2001/04/xmldsig-more#rawPGPKeyPacket
http://www.w3.org/2001/04/xmldsig-more#rawPKCS7signedData
http://www.w3.org/2001/04/xmldsig-more#rawSPKISexp
http://www.w3.org/2001/04/xmldsig-more#rawX509CRL
http://www.w3.org/2001/04/xmldsig-more#RetrievalMethod
4. Indexes
The following subsections provide an index by URI and by fragment
identifier (the portion of the URI after "#") of the algorithm and
KeyInfo URIs defined in this document and in the standards (plus the
one KeyInfo child element name defined in this document). The
"Sec/Doc" column has the section of this document or, if not
specified in this document, the document where the item is specified.
See also [XMLSECXREF].
Eastlake Standards Track PAGE 20
RFC 6931 Additional XML Security URIs April 2013
4.1. Fragment Index
The initial "http://www.w3.org/" part of the URI is not included
below. The first six entries have a null fragment identifier or no
fragment identifier.
Fragment URI Sec/Doc
--------- ---- --------
2002/06/xmldsig-filter2 [XPATH]
2006/12/xmlc12n11# [CANON11]
TR/1999/REC-xslt-19991116 [XSLT]
TR/1999/REC-xpath-19991116 [XPATH]
TR/2001/06/xml-exc-c14n# [XCANON]
TR/2001/REC-xml-c14n-20010315 [CANON10]
TR/2001/REC-xmlschema-1-20010502 [Schema]
aes128-cbc 2001/04/xmlenc#aes128-cbc [XMLENC11]
aes128-gcm 2009/xmlenc11#aes128-gcm [XMLENC11]
aes192-cbc 2001/04/xmlenc#aes192-cbc [XMLENC11]
aes192-gcm 2009/xmlenc11#aes192-gcm [XMLENC11]
aes256-cbc 2001/04/xmlenc#aes256-cbc [XMLENC11]
aes256-gcm 2009/xmlenc11#aes256-gcm [XMLENC11]
arcfour 2001/04/xmldsig-more#arcfour 2.6.1
base64 2000/09/xmldsig#base64 [RFC 3275]
camellia128-cbc 2001/04/xmldsig-more#camellia128-cbc 2.6.2
camellia192-cbc 2001/04/xmldsig-more#camellia192-cbc 2.6.2
camellia256-cbc 2001/04/xmldsig-more#camellia256-cbc 2.6.2
ConcatKDF 2009/xmlenc11#ConcatKDF [XMLENC11]
decrypt#XML 2002/07/decrypt#XML [DECRYPT]
decrypt#Binary 2002/07/decrypt#Binary [DECRYPT]
DEREncodedKeyValue 2009/xmldsig11#DEREncodedKeyValue [XMLDSIG11]
dh 2001/04/xmlenc#dh [XMLENC11]
dh-es 2009/xmlenc11#dh-es [XMLENC11]
dsa-sha1 2000/09/xmldsig#dsa-sha1 [RFC 3275]
dsa-sha256 2009/xmldsig11#dsa-sha256 [XMLDSIG11]
DSAKeyValue 2000/09/xmldsig#DSAKeyValue [XMLDSIG11]
ECDH-ES 2009/xmlenc11#ECDH-ES [XMLENC11]
ecdsa-ripemd160 2007/05/xmldsig-more#ecdsa-ripemd160 2.3.6
ecdsa-sha1 2001/04/xmldsig-more#ecdsa-sha1 2.3.6
ecdsa-sha224 2001/04/xmldsig-more#ecdsa-sha224 2.3.6
ecdsa-sha256 2001/04/xmldsig-more#ecdsa-sha256 2.3.6
ecdsa-sha384 2001/04/xmldsig-more#ecdsa-sha384 2.3.6
ecdsa-sha512 2001/04/xmldsig-more#ecdsa-sha512 2.3.6
Eastlake Standards Track PAGE 21
RFC 6931 Additional XML Security URIs April 2013
ecdsa-whirlpool 2007/05/xmldsig-more#ecdsa-whirlpool 2.3.5
ecies-kem 2010/xmlsec-ghc#ecies-kem [GENERIC]
ECKeyValue 2009/xmldsig11#ECKeyValue [XMLDSIG11]
enveloped-signature 2000/09/xmldsig#enveloped-signature [RFC 3275]
esign-sha1 2001/04/xmldsig-more#esign-sha1 2.3.7
esign-sha224 2001/04/xmldsig-more#esign-sha224 2.3.7
esign-sha256 2001/04/xmldsig-more#esign-sha256 2.3.7
esign-sha384 2001/04/xmldsig-more#esign-sha384 2.3.7
esign-sha512 2001/04/xmldsig-more#esign-sha512 2.3.7
generic-hybrid 2010/xmlsec-ghc#generic-hybrid [GENERIC]
hmac-md5 2001/04/xmldsig-more#hmac-md5 2.2.1
hmac-ripemd160 2001/04/xmldsig-more#hmac-ripemd160 2.2.3
hmac-sha1 2000/09/xmldsig#hmac-sha1 [RFC 3275]
hmac-sha224 2001/04/xmldsig-more#hmac-sha224 2.2.2
hmac-sha256 2001/04/xmldsig-more#hmac-sha256 2.2.2
hmac-sha384 2001/04/xmldsig-more#hmac-sha384 2.2.2
hmac-sha512 2001/04/xmldsig-more#hmac-sha512 2.2.2
KeyName 2001/04/xmldsig-more#KeyName 3.2
KeyValue 2001/04/xmldsig-more#KeyValue 3.2
kw-aes128 2001/04/xmlenc#kw-aes128 [XMLENC11]
kw-aes128-pad 2009/xmlenc11#kw-aes-128-pad [XMLENC11]
kw-aes192 2001/04/xmlenc#kw-aes192 [XMLENC11]
kw-aes192-pad 2009/xmlenc11#kw-aes-192-pad [XMLENC11]
kw-aes256 2001/04/xmlenc#kw-aes256 [XMLENC11]
kw-aes256-pad 2009/xmlenc11#kw-aes-256-pad [XMLENC11]
kw-camellia128 2001/04/xmldsig-more#kw-camellia128 2.6.3
kw-camellia192 2001/04/xmldsig-more#kw-camellia192 2.6.3
kw-camellia256 2001/04/xmldsig-more#kw-camellia256 2.6.3
kw-seed128 2007/05/xmldsig-more#kw-seed128 2.6.6
md2-rsa-MGF1 2007/05/xmldsig-more#md2-rsa-MGF1 2.3.10
md5 2001/04/xmldsig-more#md5 2.1.1
md5-rsa-MGF1 2007/05/xmldsig-more#md5-rsa-MGF1 2.3.10
MGF1 2007/05/xmldsig-more#MGF1 2.3.9
mgf1sha1 2009/xmlenc11#mgf1sha1 [XMLENC11]
mgf1sha224 2009/xmlenc11#mgf1sha224 [XMLENC11]
mgf1sha256 2009/xmlenc11#mgf1sha256 [XMLENC11]
mgf1sha384 2009/xmlenc11#mgf1sha384 [XMLENC11]
mgf1sha512 2009/xmlenc11#mgf1sha512 [XMLENC11]
MgmtData 2000/09/xmldsig#MgmtData [XMLDSIG11]
minimal 2000/09/xmldsig#minimal 2.4
pbkdf2 2009/xmlenc11#pbkdf2 [XMLENC11]
PGPData 2000/09/xmldsig#PGPData [XMLDSIG11]
PKCS7signedData 2001/04/xmldsig-more#PKCS7signedData 3.1
Eastlake Standards Track PAGE 22
RFC 6931 Additional XML Security URIs April 2013
PKCS7signedData 2001/04/xmldsig-more#PKCS7signedData 3.2
psec-kem 2001/04/xmldsig-more#psec-kem 2.6.4
rawPGPKeyPacket 2001/04/xmldsig-more#rawPGPKeyPacket 3.2
rawPKCS7signedData 2001/04/xmldsig-more#rawPKCS7signedData 3.2
rawSPKISexp 2001/04/xmldsig-more#rawSPKISexp 3.2
rawX509Certificate 2000/09/xmldsig#rawX509Certificate [RFC 3275]
rawX509CRL 2001/04/xmldsig-more#rawX509CRL 3.2
RetrievalMethod 2001/04/xmldsig-more#RetrievalMethod 3.2
ripemd128-rsa-MGF1 2007/05/xmldsig-more#ripemd128-rsa-MGF1 2.3.10
ripemd160 2001/04/xmlenc#ripemd160 [XMLENC11]
ripemd160-rsa-MGF1 2007/05/xmldsig-more#ripemd160-rsa-MGF1 2.3.10
rsa-1_5 2001/04/xmlenc#rsa-1_5 [XMLENC11]
rsa-md5 2001/04/xmldsig-more#rsa-md5 2.3.1
rsa-oaep 2009/xmlenc11#rsa-oaep [XMLENC11]
rsa-oaep-mgf1p 2001/04/xmlenc#rsa-oaep-mgf1p [XMLENC11]
rsa-pss 2007/05/xmldsig-more#rsa-pss 2.3.9
rsa-ripemd160 2001/04/xmldsig-more#rsa-ripemd160 2.3.5
rsa-sha1 2000/09/xmldsig#rsa-sha1 [RFC 3275]
rsa-sha224 2007/05/xmldsig-more#rsa-sha224 2.3.11
rsa-sha256 2001/04/xmldsig-more#rsa-sha256 2.3.2
rsa-sha384 2001/04/xmldsig-more#rsa-sha384 2.3.3
rsa-sha512 2001/04/xmldsig-more#rsa-sha512 2.3.4
rsa-whirlpool 2007/05/xmldsig-more#rsa-whirlpool 2.3.5
rsaes-kem 2010/xmlsec-ghc#rsaes-kem [GENERIC]
RSAKeyValue 2000/09/xmldsig#RSAKeyValue [XMLDSIG11]
seed128-cbc 2007/05/xmldsig-more#seed128-cbc 2.6.5
sha1 2000/09/xmldsig#sha1 [RFC 3275]
sha1-rsa-MGF1 2007/05/xmldsig-more#sha1-rsa-MGF1 2.3.10
sha224 2001/04/xmldsig-more#sha224 2.1.2
sha224-rsa-MGF1 2007/05/xmldsig-more#sha224-rsa-MGF1 2.3.10
sha256 2001/04/xmlenc#sha256 [XMLENC11]
sha256-rsa-MGF1 2007/05/xmldsig-more#sha256-rsa-MGF1 2.3.10
sha3-224 2007/05/xmldsig-more#sha3-224 2.1.5
sha3-224-rsa-MGF1 2007/05/xmldsig-more#sha3-224-rsa-MGF1 2.3.10
sha3-256 2007/05/xmldsig-more#sha3-256 2.1.5
sha3-256-rsa-MGF1 2007/05/xmldsig-more#sha3-256-rsa-MGF1 2.3.10
sha3-384 2007/05/xmldsig-more#sha3-384 2.1.5
sha3-384-rsa-MGF1 2007/05/xmldsig-more#sha3-384-rsa-MGF1 2.3.10
sha3-512 2007/05/xmldsig-more#sha3-512 2.1.5
sha3-512-rsa-MGF1 2007/05/xmldsig-more#sha3-512-rsa-MGF1 2.3.10
sha384 2001/04/xmldsig-more#sha384 2.1.3
sha384-rsa-MGF1 2007/05/xmldsig-more#sha384-rsa-MGF1 2.3.10
sha512 2001/04/xmlenc#sha512 [XMLENC11]
sha512-rsa-MGF1 2007/05/xmldsig-more#sha512-rsa-MGF1 2.3.10
SPKIData 2000/09/xmldsig#SPKIData [XMLDSIG11]
Eastlake Standards Track PAGE 23
RFC 6931 Additional XML Security URIs April 2013
tripledes-cbc 2001/04/xmlenc#tripledes-cbc [XMLENC11]
whirlpool 2007/05/xmldsig-more#whirlpool 2.1.4
whirlpool-rsa-MGF1 2007/05/xmldsig-more#whirlpool-rsa-MGF1 2.3.10
WithComments 2006/12/xmlc14n11#WithComments [CANON11]
WithComments TR/2001/06/xml-exc-c14n#WithComments [XCANON]
WithComments TR/2001/REC-xml-c14n-20010315#WithComments
[CANON10]
X509Data 2000/09/xmldsig#X509Data [XMLDSIG11]
xptr 2001/04/xmldsig-more#xptr 2.5.1
The initial "http://www.w3.org/" part of the URI is not included
above.
4.2. URI Index
The initial "http://www.w3.org/" part of the URI is not included
below.
URI Sec/Doc Type
---- -------- -----
2000/09/xmldsig#base64 [RFC 3275] Transform
2000/09/xmldsig#DSAKeyValue [RFC 3275] Retrieval type
2000/09/xmldsig#dsa-sha1 [RFC 3275] SignatureMethod
2000/09/xmldsig#enveloped-signature [RFC 3275] Transform
2000/09/xmldsig#hmac-sha1 [RFC 3275] SignatureMethod
2000/09/xmldsig#MgmtData [RFC 3275] Retrieval type
2000/09/xmldsig#minimal 2.4 Canonicalization
2000/09/xmldsig#PGPData [RFC 3275] Retrieval type
2000/09/xmldsig#rawX509Certificate [RFC 3275] Retrieval type
2000/09/xmldsig#rsa-sha1 [RFC 3275] SignatureMethod
2000/09/xmldsig#RSAKeyValue [RFC 3275] Retrieval type
2000/09/xmldsig#sha1 [RFC 3275] DigestAlgorithm
2000/09/xmldsig#SPKIData [RFC 3275] Retrieval type
2000/09/xmldsig#X509Data [RFC 3275] Retrieval type
2001/04/xmldsig-more#arcfour 2.6.1 EncryptionMethod
2001/04/xmldsig-more#camellia128-cbc 2.6.2 EncryptionMethod
2001/04/xmldsig-more#camellia192-cbc 2.6.2 EncryptionMethod
2001/04/xmldsig-more#camellia256-cbc 2.6.2 EncryptionMethod
2001/04/xmldsig-more#ecdsa-sha1 2.3.6 SignatureMethod
2001/04/xmldsig-more#ecdsa-sha224 2.3.6 SignatureMethod
2001/04/xmldsig-more#ecdsa-sha256 2.3.6 SignatureMethod
2001/04/xmldsig-more#ecdsa-sha384 2.3.6 SignatureMethod
2001/04/xmldsig-more#ecdsa-sha512 2.3.6 SignatureMethod
2001/04/xmldsig-more#esign-sha1 2.3.7 SignatureMethod
Eastlake Standards Track PAGE 24
RFC 6931 Additional XML Security URIs April 2013
2001/04/xmldsig-more#esign-sha224 2.3.7 SignatureMethod
2001/04/xmldsig-more#esign-sha256 2.3.7 SignatureMethod
2001/04/xmldsig-more#esign-sha384 2.3.7 SignatureMethod
2001/04/xmldsig-more#esign-sha512 2.3.7 SignatureMethod
2001/04/xmldsig-more#hmac-md5 2.2.1 SignatureMethod
2001/04/xmldsig-more#hmac-ripemd160 2.2.3 SignatureMethod
2001/04/xmldsig-more#hmac-sha224 2.2.2 SignatureMethod
2001/04/xmldsig-more#hmac-sha256 2.2.2 SignatureMethod
2001/04/xmldsig-more#hmac-sha384 2.2.2 SignatureMethod
2001/04/xmldsig-more#hmac-sha512 2.2.2 SignatureMethod
2001/04/xmldsig-more#KeyName 3.2 Retrieval type
2001/04/xmldsig-more#KeyValue 3.2 Retrieval type
2001/04/xmldsig-more#kw-camellia128 2.6.3 EncryptionMethod
2001/04/xmldsig-more#kw-camellia192 2.6.3 EncryptionMethod
2001/04/xmldsig-more#kw-camellia256 2.6.3 EncryptionMethod
2001/04/xmldsig-more#md5 2.1.1 DigestAlgorithm
2001/04/xmldsig-more#PKCS7signedData 3.2 Retrieval type
2001/04/xmldsig-more#psec-kem 2.6.4 EncryptionMethod
2001/04/xmldsig-more#rawPGPKeyPacket 3.2 Retrieval type
2001/04/xmldsig-more#rawPKCS7signedData 3.2 Retrieval type
2001/04/xmldsig-more#rawSPKISexp 3.2 Retrieval type
2001/04/xmldsig-more#rawX509CRL 3.2 Retrieval type
2001/04/xmldsig-more#RetrievalMethod 3.2 Retrieval type
2001/04/xmldsig-more#rsa-md5 2.3.1 SignatureMethod
2001/04/xmldsig-more#rsa-sha256 2.3.2 SignatureMethod
2001/04/xmldsig-more#rsa-sha384 2.3.3 SignatureMethod
2001/04/xmldsig-more#rsa-sha512 2.3.4 SignatureMethod
2001/04/xmldsig-more#rsa-ripemd160 2.3.5 SignatureMethod
2001/04/xmldsig-more#sha224 2.1.2 DigestAlgorithm
2001/04/xmldsig-more#sha384 2.1.3 DigestAlgorithm
2001/04/xmldsig-more#xptr 2.5.1 Transform
2001/04/xmldsig-more#PKCS7signedData 3.1 KeyInfo child
2001/04/xmlenc#aes128-cbc [XMLENC11] EncryptionMethod
2001/04/xmlenc#aes192-cbc [XMLENC11] EncryptionMethod
2001/04/xmlenc#aes256-cbc [XMLENC11] EncryptionMethod
2001/04/xmlenc#dh [XMLENC11] AgreementMethod
2001/04/xmlenc#kw-aes128 [XMLENC11] EncryptionMethod
2001/04/xmlenc#kw-aes192 [XMLENC11] EncryptionMethod
2001/04/xmlenc#kw-aes256 [XMLENC11] EncryptionMethod
2001/04/xmlenc#ripemd160 [XMLENC11] DigestAlgorithm
2001/04/xmlenc#rsa-1_5 [XMLENC11] EncryptionMethod
2001/04/xmlenc#rsa-oaep-mgf1p [XMLENC11] EncryptionMethod
2001/04/xmlenc#sha256 [XMLENC11] DigestAlgorithm
2001/04/xmlenc#sha512 [XMLENC11] DigestAlgorithm
2001/04/xmlenc#tripledes-cbc [XMLENC11] EncryptionMethod
2002/06/xmldsig-filter2 [XPATH] Transform
Eastlake Standards Track PAGE 25
RFC 6931 Additional XML Security URIs April 2013
2002/07/decrypt#XML [DECRYPT] Transform
2002/07/decrypt#Binary [DECRYPT] Transform
2006/12/xmlc12n11# [CANON11] Canonicalization
2006/12/xmlc14n11#WithComments [CANON11] Canonicalization
2007/05/xmldsig-more#ecdsa-ripemd160 2.3.6 SignatureMethod
2007/05/xmldsig-more#ecdsa-whirlpool 2.3.5 SignatureMethod
2007/05/xmldsig-more#kw-seed128 2.6.6 EncryptionMethod
2007/05/xmldsig-more#md2-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#md5-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#MGF1 2.3.9 SignatureMethod
2007/05/xmldsig-more#ripemd128-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#ripemd160-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#rsa-pss 2.3.9 SignatureMethod
2007/05/xmldsig-more#rsa-sha224 2.3.11 SignatureMethod
2007/05/xmldsig-more#rsa-whirlpool 2.3.5 SignatureMethod
2007/05/xmldsig-more#seed128-cbc 2.6.5 EncryptionMethod
2007/05/xmldsig-more#sha1-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha224-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha256-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha3-224 2.1.5 DigestAlgorithm
2007/05/xmldsig-more#sha3-224-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha3-256 2.1.5 DigestAlgorithm
2007/05/xmldsig-more#sha3-256-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha3-384 2.1.5 DigestAlgorithm
2007/05/xmldsig-more#sha3-384-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha3-512 2.1.5 DigestAlgorithm
2007/05/xmldsig-more#sha3-512-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha384-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#sha512-rsa-MGF1 2.3.10 SignatureMethod
2007/05/xmldsig-more#whirlpool 2.1.4 DigestAlgorithm
2007/05/xmldsig-more#whirlpool-rsa-MGF1 2.3.10 SignatureMethod
2009/xmlenc11#kw-aes-128-pad [XMLENC11] EncryptionMethod
2009/xmlenc11#kw-aes-192-pad [XMLENC11] EncryptionMethod
2009/xmlenc11#kw-aes-256-pad [XMLENC11] EncryptionMethod
2009/xmldsig11#dsa-sha256 [XMLDSIG11] SignatureMethod
2009/xmldsig11#ECKeyValue [XMLDSIG11] Retrieval type
2009/xmldsig11#DEREncodedKeyValue [XMLDSIG11] Retrieval type
2009/xmlenc11#aes128-gcm [XMLENC11] EncryptionMethod
2009/xmlenc11#aes192-gcm [XMLENC11] EncryptionMethod
2009/xmlenc11#aes256-gcm [XMLENC11] EncryptionMethod
2009/xmlenc11#ConcatKDF [XMLENC11] EncryptionMethod
2009/xmlenc11#mgf1sha1 [XMLENC11] SignatureMethod
2009/xmlenc11#mgf1sha224 [XMLENC11] SignatureMethod
2009/xmlenc11#mgf1sha256 [XMLENC11] SignatureMethod
Eastlake Standards Track PAGE 26
RFC 6931 Additional XML Security URIs April 2013
2009/xmlenc11#mgf1sha384 [XMLENC11] SignatureMethod
2009/xmlenc11#mgf1sha512 [XMLENC11] SignatureMethod
2009/xmlenc11#pbkdf2 [XMLENC11] EncryptionMethod
2009/xmlenc11#rsa-oaep [XMLENC11] EncryptionMethod
2009/xmlenc11#ECDH-ES [XMLENC11] EncryptionMethod
2009/xmlenc11#dh-es [XMLENC11] EncryptionMethod
2010/xmlsec-ghc#generic-hybrid [GENERIC] Generic Hybrid
2010/xmlsec-ghc#rsaes-kem [GENERIC] Generic Hybrid
2010/xmlsec-ghc#ecies-kem [GENERIC] Generic Hybrid
TR/1999/REC-xpath-19991116 [XPATH] Transform
TR/1999/REC-xslt-19991116 [XSLT] Transform
TR/2001/06/xml-exc-c14n# [XCANON] Canonicalization
TR/2001/06/xml-exc-c14n#WithComments [XCANON] Canonicalization
TR/2001/REC-xml-c14n-20010315 [CANON10] Canonicalization
TR/2001/REC-xml-c14n-20010315#WithComments
[CANON10] Canonicalization
TR/2001/REC-xmlschema-1-20010502 [Schema] Transform
The initial "http://www.w3.org/" part of the URI is not included
above.
5. Allocation Considerations
W3C and IANA allocation considerations are given below.
5.1. W3C Allocation Considerations
As it is easy for people to construct their own unique URIs [RFC 3986]
and, if appropriate, to obtain a URI from the W3C, it is not intended
that any additional "http://www.w3.org/2007/05/xmldsig-more#" URIs be
created beyond those enumerated in this RFC. (W3C Namespace
stability rules prohibit the creation of new URIs under
"http://www.w3.org/2000/09/xmldsig#" and URIs under
"http://www.w3.org/2001/04/xmldsig-more#" were frozen with the
publication of [RFC 4051].)
An "xmldsig-more" URI does not imply any official W3C or IETF status
for these algorithms or identifiers nor does it imply that they are
only useful in digital signatures. Currently, dereferencing such
URIs may or may not produce a temporary placeholder document.
Permission to use these URI prefixes has been given by the W3C.
Eastlake Standards Track PAGE 27
RFC 6931 Additional XML Security URIs April 2013
5.2. IANA Considerations
IANA has established a registry entitled "XML Security URIs". The
initial contents correspond to Section 4.2 of this document with each
section number in the "Sec/Doc" column augmented with a reference to
this RFC (for example, "2.6.4" means "[RFC 6931], Section 2.6.4").
New entries, including new Types, will be added based on Expert
Review [RFC 5226]. Criterion for inclusion are (1) documentation
sufficient for interoperability of the algorithm or data type and the
XML syntax for its representation and use and (2) sufficient
importance as normally indicated by inclusion in (2a) an approved W3C
Note, Proposed Recommendation, or Recommendation or (2b) an approved
IETF Standards Track document. Typically, the registry will
reference a W3C or IETF document specifying such XML syntax; that
document will either contain a more abstract description of the
algorithm or data type or reference another document with a more
abstract description.
6. Security Considerations
This RFC is concerned with documenting the URIs that designate
algorithms and some data types used in connection with XML security.
The security considerations vary widely with the particular
algorithms, and the general security considerations for XML security
are outside of the scope of this document but appear in [XMLDSIG11],
[XMLENC11], [CANON10], [CANON11], and [GENERIC].
[RFC 6151] should be consulted before considering the use of MD5 as a
DigestMethod or RSA-MD5 as a SignatureMethod.
See [RFC 6194] for SHA-1 security considerations and [RFC 6151] for MD5
security considerations.
Additional security considerations are given in connection with the
description of some algorithms in the body of this document.
Implementers should be aware that cryptographic algorithms become
weaker with time. As new cryptoanalysis techniques are developed and
computing performance improves, the work factor to break a particular
cryptographic algorithm will reduce. Therefore, cryptographic
implementations should be modular, allowing new algorithms to be
readily inserted. That is, implementers should be prepared for the
set of mandatory-to-implement algorithms to change over time.
Eastlake Standards Track PAGE 28
RFC 6931 Additional XML Security URIs April 2013
7. Acknowledgements
The contributions to this document by the following people, listed in
alphabetic order, are gratefully acknowledged: Benoit Claise, Adrian
Farrel, Stephen Farrell, Ernst Giessmann, Frederick Hirsch, Bjoern
Hoehrmann, Russ Housley, Satoru Kanno, Charlie Kaufman, Konrad Lanz,
HwanJin Lee, Barry Leiba, Peter Lipp, Subramanian Moonesamy, Thomas
Roessler, Hanseong Ryu, Peter Saint-Andre, and Sean Turner.
The following contributors to [RFC 4051], on which this document is
based, are gratefully acknowledged: Glenn Adams, Merlin Hughs, Gregor
Karlinger, Brian LaMachia, Shiho Moriai, Joseph Reagle, Russ Housley,
and Joel Halpern.
Eastlake Standards Track PAGE 29
RFC 6931 Additional XML Security URIs April 2013
Appendix A. Changes from RFC 4051
The following changes have been made in RFC 4051 to produce this
document.
1. Updated and added numerous RFC, W3C, and Internet-Draft
references.
2. Added #ecdsa-ripemd160, #whirlpool, #ecdsa-whirlpool,
#rsa-whirlpool, #seed128-cbc, and #kw-seed128.
3. Incorporated RFC 4051 errata [Errata191].
4. Added URI and fragment index sections.
5. For MD5 and SHA-1, added references to [RFC 6151] and [RFC 6194].
5. Added SHA-3 / Keccak placeholder section including #sha3-224,
#sha3-256, #sha3-384, and #sha3-512.
6. Added RSASSA-PSS sections including #sha3-224-MGF1,
#sha3-256-MGF1, #sha3-384-MGF1, #sha3-512-MGF1, #md2-rsa-MGF1,
#md5-rsa-MGF1, #sha1-rsa-MGF1, #sha224-rsa-MGF1,
#sha256-rsa-MGF1, #sha384-rsa-MGF1, #sha512-rsa-MGF1,
#ripemd128-rsa-MGF1, #ripemd160-rsa-MGF1, and
#whirlpool-rsa-MGF1.
7. Added new URIs from Canonical XML 1.1 and XML Encryption 1.1
including: #aes128-gcm, #aes192-gcm, #aes256-gc, #ConcatKDF,
#pbkdf, #rsa-oaep, #ECDH-ES, and #dh-es.
8. Added acronym subsection.
9. Added numerous URIs that are specified in W3C XML Security
documents to the Indexes. These do not have sections in the body
of this document -- for example, those for dsa-sha256, mgf1sha*,
decrypt#XML, and xmldsig-filter2.
10. Requested establishment of an IANA registry.
11. Made various editorial changes.
Eastlake Standards Track PAGE 30
RFC 6931 Additional XML Security URIs April 2013
Normative References
[10118-3] ISO, "Information technology -- Security techniques --
Hash-functions -- Part 3: Dedicated hash-functions",
ISO/IEC 10118-3:2004, 2004.
[18033-2] ISO, "Information technology -- Security techniques --
Encryption algorithms -- Part 3: Asymmetric ciphers",
ISO/IEC 18033-2:2010, 2010.
[Camellia] Aoki, K., Ichikawa, T., Matsui, M., Moriai, S.,
Nakajima, J., and T. Tokita, "Camellia: A 128-bit Block
Cipher Suitable for Multiple Platforms - Design and
Analysis", in Selected Areas in Cryptography, 7th
Annual International Workshop, SAC 2000, August 2000,
Proceedings, Lecture Notes in Computer Science 2012,
pp. 39-56, Springer-Verlag, 2001.
[FIPS180-4] US National Institute of Science and Technology,
"Secure Hash Standard (SHS)", FIPS 180-4, March 2012,
<http://csrc.nist.gov/publications/fips/fips180-4/
fips-180-4.pdf>.
[FIPS186-3] US National Institute of Science and Technology,
"Digital Signature Standard (DSS)", FIPS 186-3, June
2009, <http://csrc.nist.gov/publications/fips/
fips186-3/fips_186-3.pdf>.
[IEEEP1363a] IEEE, "Standard Specifications for Public Key
Cryptography- Amendment 1: Additional Techniques", IEEE
1363a-2004, 2004.
[RC4] Schneier, B., "Applied Cryptography: Protocols,
Algorithms, and Source Code in C", Second Edition, John
Wiley and Sons, New York, NY, 1996.
[RFC 1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC
1321, April 1992.
[RFC 2045] Freed, N. and N. Borenstein, "Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet
Message Bodies", RFC 2045, November 1996.
[RFC 2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC:
Keyed-Hashing for Message Authentication", RFC 2104,
February 1997.
Eastlake Standards Track PAGE 31
RFC 6931 Additional XML Security URIs April 2013
[RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC 2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax
Version 1.5", RFC 2315, March 1998.
[RFC 3275] Eastlake 3rd, D., Reagle, J., and D. Solo, "(Extensible
Markup Language) XML-Signature Syntax and Processing",
RFC 3275, March 2002.
[RFC 3394] Schaad, J. and R. Housley, "Advanced Encryption
Standard (AES) Key Wrap Algorithm", RFC 3394, September
2002.
[RFC 3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.
[RFC 3713] Matsui, M., Nakajima, J., and S. Moriai, "A Description
of the Camellia Encryption Algorithm", RFC 3713, April
2004.
[RFC 3986] Berners-Lee, T., Fielding, R., and L. Masinter,
"Uniform Resource Identifier (URI): Generic Syntax",
STD 66, RFC 3986, January 2005.
[RFC 4050] Blake-Wilson, S., Karlinger, G., Kobayashi, T., and Y.
Wang, "Using the Elliptic Curve Signature Algorithm
(ECDSA) for XML Digital Signatures", RFC 4050, April
2005.
[RFC 4055] Schaad, J., Kaliski, B., and R. Housley, "Additional
Algorithms and Identifiers for RSA Cryptography for use
in the Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL)
Profile", RFC 4055, June 2005.
[RFC 4269] Lee, H., Lee, S., Yoon, J., Cheon, D., and J. Lee, "The
SEED Encryption Algorithm", RFC 4269, December 2005.
[RFC 5226] Narten, T. and H. Alvestrand, "Guidelines for Writing
an IANA Considerations Section in RFCs", BCP 26, RFC
5226, May 2008.
[RFC 6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash
Algorithms (SHA and SHA-based HMAC and HKDF)", RFC
6234, May 2011.
Eastlake Standards Track PAGE 32
RFC 6931 Additional XML Security URIs April 2013
[X9.62] American National Standards Institute, Accredited
Standards Committee X9, "Public Key Cryptography for
the Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA)", ANSI X9.62:2005,
2005.
[XMLENC10] Reagle, J. and D. Eastlake, "XML Encryption Syntax and
Processing", W3C Recommendation, 10 December 2002,
<http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/>.
[XMLENC11] Eastlake, D., Reagle, J., Hirsch, F., and T. Roessler,
"XML Encryption Syntax and Processing Version 1.1", W3C
Proposed Recommendation, 24 January 2013,
<http://www.w3.org/TR/2013/PR-xmlenc-core1-20130124/>.
[XPointer] Grosso, P., Maler, E., Marsh, J., and N. Walsh,
"XPointer Framework", W3C Recommendation, 25 March
2003, <http://www.w3.org/TR/2003/
REC-xptr-framework-20030325/>.
Informative References
[CANON10] Boyer, J., "Canonical XML Version 1.0", W3C
Recommendation, 15 March 2001,
<http://www.w3.org/TR/2001/REC-xml-c14n-20010315>.
[CANON11] Boyer, J., and G. Marcy, "Canonical XML Version 1.1",
W3C Recommendation, 2 May 2008,
<http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/>.
[DECRYPT] Hughes, M., Imamura, T., and H. Maruyama, "Decryption
Transform for XML Signature", W3C Recommendation, 10
December 2002, <http://www.w3.org/TR/2002/
REC-xmlenc-decrypt-20021210>.
[Errata191] RFC Errata, Errata ID 191, RFC 4051,
<http://www.rfc-editor.org>.
[GENERIC] Nystrom, M. and F. Hirsch, "XML Security Generic Hybrid
Ciphers", W3C Working Group Note, 24 January 2013,
<http://www.w3.org/TR/2013/
NOTE-xmlsec-generic-hybrid-20130124/>.
[Keccak] Bertoni, G., Daeman, J., Peeters, M., and G. Van
Assche, "The KECCAK sponge function family", January
2013, <http://keccak.noekeon.org>.
Eastlake Standards Track PAGE 33
RFC 6931 Additional XML Security URIs April 2013
[RFC 3075] Eastlake 3rd, D., Reagle, J., and D. Solo, "XML-
Signature Syntax and Processing", RFC 3075, March 2001.
[RFC 3076] Boyer, J., "Canonical XML Version 1.0", RFC 3076, March
2001.
[RFC 3092] Eastlake 3rd, D., Manros, C., and E. Raymond,
"Etymology of "Foo"", RFC 3092, 1 April 2001.
[RFC 3741] Boyer, J., Eastlake 3rd, D., and J. Reagle, "Exclusive
XML Canonicalization, Version 1.0", RFC 3741, March
2004.
[RFC 4010] Park, J., Lee, S., Kim, J., and J. Lee, "Use of the
SEED Encryption Algorithm in Cryptographic Message
Syntax (CMS)", RFC 4010, February 2005.
[RFC 4051] Eastlake 3rd, D., "Additional XML Security Uniform
Resource Identifiers (URIs)", RFC 4051, April 2005.
[RFC 6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental
Elliptic Curve Cryptography Algorithms", RFC 6090,
February 2011.
[RFC 6151] Turner, S. and L. Chen, "Updated Security
Considerations for the MD5 Message-Digest and the HMAC-
MD5 Algorithms", RFC 6151, March 2011.
[RFC 6194] Polk, T., Chen, L., Turner, S., and P. Hoffman,
"Security Considerations for the SHA-0 and SHA-1
Message-Digest Algorithms", RFC 6194, March 2011.
[Schema] Thompson, H., Beech, D., Maloney, M., and N.
Mendelsohn, "XML Schema Part 1: Structures Second
Edition", W3C Recommendation, 28 October 2004,
<http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/>.
Biron, P. and A. Malhotra, "XML Schema Part 2:
Datatypes Second Edition", W3C Recommendation, 28
October 2004,
<http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/>.
[SHA-3] US National Institute of Science and Technology, "SHA-3
WINNER", February 2013, <http://csrc.nist.gov/
groups/ST/hash/sha-3/winner_sha-3.html>.
[W3C] World Wide Web Consortium, <http://www.w3.org>.
Eastlake Standards Track PAGE 34
RFC 6931 Additional XML Security URIs April 2013
[XCANON] Boyer, J., Eastlake, D., and J. Reagle, "Exclusive XML
Canonicalization Version 1.0", W3C Recommendation, 18
July 2002,
<http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/>.
[XMLDSIG10] Eastlake, D., Reagle, J., Solo, D., Hirsch, F., and T.
Roessler, "XML Signature Syntax and Processing (Second
Edition)", W3C Recommendation, 10 June 2008,
<http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/>.
[XMLDSIG11] Eastlake, D., Reagle, J., Solo, D., Hirsch, F.,
Nystrom, M., Roessler, T., and K. Yiu, "XML Signature
Syntax and Processing Version 1.1", W3C Proposed
Recommendation, 24 January 2013,
<http://www.w3.org/TR/2013/PR-xmldsig-core1-20130124/>.
[XMLDSIG-PROP]
Hirsch, F., "XML Signature Properties", W3C Proposed
Recommendation, 24 January 2013, <http://www.w3.org/TR/
2013/PR-xmldsig-properties-20130124/>.
[XMLSECXREF] Hirsch, F., Roessler, T., and K. Yiu, "XML Security
Algorithm Cross-Reference", W3C Working Group Note, 24
January 2013, <http://www.w3.org/TR/2013/
NOTE-xmlsec-algorithms-20130124/>.
[XPATH] Boyer, J., Hughes, M., and J. Reagle, "XML-Signature
XPath Filter 2.0", W3C Recommendation, 8 November 2002,
<http://www.w3.org/TR/2002/
REC-xmldsig-filter2-20021108/>.
Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.,
Kay, M., Robie, J., and J. Simeon, "XML Path Language
(XPath) 2.0 (Second Edition)", W3C Recommendation, 14
December 2010,
<http://www.w3.org/TR/2010/REC-xpath20-20101214/>.
[XSLT] Saxonica, M., "XSL Transformations (XSLT) Version 2.0",
W3C Recommendation, 23 January 2007,
<http://www.w3.org/TR/2007/REC-xslt20-20070123/>.
Eastlake Standards Track PAGE 35
RFC 6931 Additional XML Security URIs April 2013
Author's Address
Donald E. Eastlake, 3rd
Huawei Technologies
155 Beaver Street
Milford, MA 01757
USA
Phone: +1-508-333-2270
EMail: d3e3e3@gmail.com
Eastlake Standards Track PAGE 36
RFC TOTAL SIZE: 75220 bytes
PUBLICATION DATE: Thursday, April 18th, 2013
LEGAL RIGHTS: The IETF Trust (see BCP 78)
|