The RFC Archive
 The RFC Archive   RFC 5640   « Jump to any RFC number directly 
 RFC Home
Full RFC Index
Recent RFCs
RFC Standards
Best Current Practice
RFC Errata
1 April RFC



IETF RFC 5640

Load-Balancing for Mesh Softwires

Last modified on Saturday, August 29th, 2009

Permanent link to RFC 5640
Search GitHub Wiki for RFC 5640
Show other RFCs mentioning RFC 5640







Network Working Group                                        C. Filsfils
Request for Comments: 5640                                  P. Mohapatra
Category: Standards Track                                 C. Pignataro
                                                           Cisco Systems
                                                             August 2009


                   Load-Balancing for Mesh Softwires

 Abstract

   Payloads transported over a Softwire mesh service (as defined by BGP
   Encapsulation Subsequent Address Family Identifier (SAFI) information
   exchange) often carry a number of identifiable, distinct flows.  It
   can, in some circumstances, be desirable to distribute these flows
   over the equal cost multiple paths (ECMPs) that exist in the packet
   switched network.  Currently, the payload of a packet entering the
   Softwire can only be interpreted by the ingress and egress routers.
   Thus, the load-balancing decision of a core router is only based on
   the encapsulating header, presenting much less entropy than available
   in the payload or the encapsulated header since the Softwire
   encapsulation acts in a tunneling fashion.  This document describes a
   method for achieving comparable load-balancing efficiency in a
   network carrying Softwire mesh service over Layer Two Tunneling
   Protocol - Version 3 (L2TPv3) over IP or Generic Routing
   Encapsulation (GRE) encapsulation to what would be achieved without
   such encapsulation.

 Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

 Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info).
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.





Filsfils, et al.            Standards Track                  PAGE 1 top


RFC 5640 Load-Balancing for Mesh Softwires August 2009 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Requirements Language . . . . . . . . . . . . . . . . . . . 2 2. Load-Balancing Block sub-TLV . . . . . . . . . . . . . . . . . 2 2.1. Applicability to Tunnel Types . . . . . . . . . . . . . . . 3 2.2. Encapsulation Considerations . . . . . . . . . . . . . . . 4 3. IANA Considerations . . . . . . . . . . . . . . . . . . . . . . 4 4. Security Considerations . . . . . . . . . . . . . . . . . . . . 4 5. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 4 6. Normative References . . . . . . . . . . . . . . . . . . . . . 5 1. Introduction Consider the case of a router R1 that encapsulates a packet P into a Softwire bound to router R3. R2 is a router on the shortest path from R1 to R3. R2's shortest path to R3 involves equal cost multiple paths (ECMPs). The goal is for R2 to be able to choose which path to use on the basis of the full entropy of packet P. This is achieved by carrying in the encapsulation header a signature of the inner header, hence enhancing the entropy of the flows as seen by the core routers. The signature is carried as part of one of the fields of the encapsulation header. To aid with better description in the document, we define the generic term "load-balancing field" to mean such a value that is specific to an encapsulation type. For example, for L2TPv3-over-IP [RFC 3931] encapsulation, the load- balancing field is the Session Identifier (Session ID). For GRE [RFC 2784] encapsulation, the Key field [RFC 2890], if present, represents the load-balancing field. This mechanism assumes that core routers base their load-balancing decisions on a flow definition that includes the load-balancing field. This is an obvious and generic functionality as, for example, for L2TPv3-over-IP tunnels, the Session ID is at the same well-known constant offset as the TCP/ UDP ports in the encapsulating header. The Encapsulation SAFI [RFC 5512] is extended such that a contiguous block of the load-balancing field is bound to the Softwire advertised by a BGP next-hop. On a per-inner-flow basis, the ingress Provider Edge (PE) selects one value of the load-balancing field from the block to preserve per-flow ordering and, at the same time, to enhance the entropy across flows. 1.1. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC 2119]. Filsfils, et al. Standards Track PAGE 2 top

RFC 5640 Load-Balancing for Mesh Softwires August 2009 2. Load-Balancing Block sub-TLV This document defines a new sub-TLV for use with the Tunnel Encapsulation Attribute defined in [RFC 5512]. The new sub-TLV is referred to as the "Load-Balancing Block sub-TLV" and MAY be included in any Encapsulation SAFI UPDATE message where load-balancing is desired. The sub-TLV type of the Load-Balancing Block sub-TLV is 5. The sub- TLV length is 2 octets. The value represents the length of the block in bits and MUST NOT exceed the size of the load-balancing field. This format is very similar to the variable-length subnet masking (VLSM) used in IP addresses to allow arbitrary length prefixes. The block is determined by extracting the initial sequence of 'block size' bits from the load-balancing field. If a load-balancing field is not signaled (e.g., if the encapsulation sub-TLV is not included in an advertisement as in the case of GRE without a Key), then the Load-Balancing Block sub-TLV MUST NOT be included. The smaller the value field of the Load-Balancing Block sub-TLV, the larger the space for per-flow identification, and hence the better entropy for potential load-balancing in the core, as well as, the lower the polarization when mapping flows to ECMP paths. However, reducing the load-balancing block size consumes more L2TPv3 Session IDs or GRE Keys, resulting in potentially less numbers of supported services. A typical deployment would need to arbitrate between this trade-off. As an example, assume that there is a Softwire set up between R1 and R3 with L2TPv3-over-IP tunnel type. Assume that R3 encodes the Session ID with value 0x1234ABCD in the encapsulation sub-TLV. It also includes the Load-Balancing Block sub-TLV and encodes the value 24. This should be interpreted as follows: o If an ingress router does not understand the Load-Balancing Block sub-TLV, it continues to use the Session ID 0x1234ABCD and encapsulates all packets with that Session ID. o If an ingress router understands the Load-Balancing Block sub-TLV, it picks the first 24 bits out of the Session ID (0x1234AB) to be used as the block and fills in the lower-order 8 bits with a per- flow identifier (e.g., it can be determined based on the inner packet's source, destination addresses, and TCP/UDP ports). This selection preserves the per-flow ordering of packets. Filsfils, et al. Standards Track PAGE 3 top

RFC 5640 Load-Balancing for Mesh Softwires August 2009 This requirement and solution applies equally to GRE where the Key plays the same role as the Session ID in L2TPv3. Needless to say, if an egress router does not support the Load- Balancing Block sub-TLV, the Softwire continues to operate with a single load-balancing field with which all ingress routers encapsulate. 2.1. Applicability to Tunnel Types The Load-Balancing Block sub-TLV is applicable to tunnel types that define a load-balancing field. This document defines load-balancing fields for tunnel types 1 (L2TPv3 over IP) and 2 (GRE) as follows: o L2TPv3 over IP - Session ID. Special care needs to be taken to always create a non-zero Session ID. When an egress router includes a Load-Balancing Block sub-TLV, it MUST encode the Session ID field of the encapsulation sub-TLV in a way that ensures that the most significant bits of the Session ID, after extracting the block, are non-zero. o GRE - GRE Key This document does not define a load-balancing field for the IP-in-IP tunnel type (tunnel types 7). Future tunnel types that desire to use the Load-Balancing Block sub-TLV MUST define a load-balancing field that is part of the encapsulating header. 2.2. Encapsulation Considerations Fields included in the encapsulation header besides the load- balancing field are not affected by the Load-Balancing Block sub-TLV. All other encapsulation fields are shared between variations of the load-balancing field. For example, for the L2TPv3-over-IP tunnel type, if the optional cookie is included in the encapsulation sub-TLV by the egress router during Softwire signaling, it applies to all the "Session ID" values derived at the ingress router after applying the load-balancing block as described in this document. 3. IANA Considerations IANA has assigned the value 5 for the Load-Balancing Block sub-TLV, in the BGP Tunnel Encapsulation Attribute Sub-TLVs registry (number space created as part of the publication of [RFC 5512]): Sub-TLV name Value ------------- ----- Load-Balancing Block 5 Filsfils, et al. Standards Track PAGE 4 top

RFC 5640 Load-Balancing for Mesh Softwires August 2009 4. Security Considerations This document defines a new sub-TLV for the BGP Tunnel Encapsulation Attribute. Security considerations for the BGP Encapsulation SAFI and the BGP Tunnel Encapsulation Attribute are covered in [RFC 5512]. There are no additional security risks introduced by this design. 5. Acknowledgements The authors would like to thank Stewart Bryant, Mark Townsley, Rajiv Asati, Kireeti Kompella, and Robert Raszuk for their review and comments. 6. Normative References [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC 2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, March 2000. [RFC 2890] Dommety, G., "Key and Sequence Number Extensions to GRE", RFC 2890, September 2000. [RFC 3931] Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005. [RFC 5512] Mohapatra, P. and E. Rosen, "The BGP Encapsulation Subsequent Address Family Identifier (SAFI) and the BGP Tunnel Encapsulation Attribute", RFC 5512, April 2009. Filsfils, et al. Standards Track PAGE 5 top

RFC 5640 Load-Balancing for Mesh Softwires August 2009 Authors' Addresses Clarence Filsfils Cisco Systems Brussels, Belgium EMail: cfilsfil@cisco.com Pradosh Mohapatra Cisco Systems 170 W. Tasman Drive San Jose, CA 95134 USA EMail: pmohapat@cisco.com Carlos Pignataro Cisco Systems 7200 Kit Creek Road, PO Box 14987 Research Triangle Park, NC 27709 USA EMail: cpignata@cisco.com Filsfils, et al. Standards Track PAGE 6 top

Load-Balancing for Mesh Softwires RFC TOTAL SIZE: 12250 bytes PUBLICATION DATE: Saturday, August 29th, 2009 LEGAL RIGHTS: The IETF Trust (see BCP 78)


RFC-ARCHIVE.ORG

© RFC 5640: The IETF Trust, Saturday, August 29th, 2009
© the RFC Archive, 2024, RFC-Archive.org
Maintainer: J. Tunnissen

Privacy Statement