|
|
|
|
|
IETF RFC 5572
IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)
Last modified on Friday, February 19th, 2010
Permanent link to RFC 5572
Search GitHub Wiki for RFC 5572
Show other RFCs mentioning RFC 5572
Independent Submission M. Blanchet
Request for Comments: 5572 Viagenie
Category: Experimental F. Parent
ISSN: 2070-1721 Beon Solutions
February 2010
IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)
Abstract
A tunnel broker with the Tunnel Setup Protocol (TSP) enables the
establishment of tunnels of various inner protocols, such as IPv6 or
IPv4, inside various outer protocols packets, such as IPv4, IPv6, or
UDP over IPv4 for IPv4 NAT traversal. The control protocol (TSP) is
used by the tunnel client to negotiate the tunnel with the broker. A
mobile node implementing TSP can be connected to both IPv4 and IPv6
networks whether it is on IPv4 only, IPv4 behind a NAT, or on IPv6
only. A tunnel broker may terminate the tunnels on remote tunnel
servers or on itself. This document describes the TSP within the
model of the tunnel broker model.
Status of This Memo
This document is not an Internet Standards Track specification; it is
published for examination, experimental implementation, and
evaluation.
This document defines an Experimental Protocol for the Internet
community. This is a contribution to the RFC Series, independently
of any other RFC stream. The RFC Editor has chosen to publish this
document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by
the RFC Editor are not a candidate for any level of Internet
Standard; see Section 2 of RFC 5741.
Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at
http://www.rfc-editor.org/info/RFC 5572.
IESG Note
The content of this RFC was at one time considered by the IETF, and
therefore it may resemble a current IETF work in progress or a
published IETF work.
Blanchet & Parent Experimental PAGE 1
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Copyright Notice
Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document.
Blanchet & Parent Experimental PAGE 2
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Table of Contents
1. Introduction ....................................................4
2. Description of the TSP Framework ................................4
2.1. NAT Discovery ..............................................6
2.2. Any Encapsulation ..........................................6
2.3. Mobility ...................................................6
3. Advantages of TSP ...............................................7
4. Protocol Description ............................................7
4.1. Terminology ................................................7
4.2. Topology ...................................................8
4.3. Overview ...................................................8
4.4. TSP Signaling ..............................................9
4.4.1. Signaling Transport .................................9
4.4.2. Authentication Phase ...............................11
4.4.3. Command and Response Phase .........................14
4.5. Tunnel Establishment ......................................16
4.5.1. IPv6-over-IPv4 Tunnels .............................16
4.5.2. IPv6-over-UDP Tunnels ..............................16
4.6. Tunnel Keep-Alive .........................................16
4.7. XML Messaging .............................................17
4.7.1. Tunnel .............................................17
4.7.2. Client Element .....................................18
4.7.3. Server Element .....................................19
4.7.4. Broker Element .....................................19
5. Tunnel Request Examples ........................................19
5.1. Host Tunnel Request and Reply .............................19
5.2. Router Tunnel Request with a /48 Prefix Delegation
and Reply .................................................20
5.3. IPv4 over IPv6 Tunnel Request .............................22
5.4. NAT Traversal Tunnel Request ..............................23
6. Applicability of TSP in Different Networks .....................24
6.1. Provider Networks with Enterprise Customers ...............24
6.2. Provider Networks with Home/Small Office Customers ........25
6.3. Enterprise Networks .......................................25
6.4. Wireless Networks .........................................25
6.5. Unmanaged Networks ........................................26
6.6. Mobile Hosts and Mobile Networks ..........................26
7. IANA Considerations ............................................26
8. Security Considerations ........................................27
9. Conclusion .....................................................27
10. Acknowledgements ..............................................27
11. References ....................................................28
11.1. Normative References .....................................28
11.2. Informative References ...................................28
Appendix A. The TSP DTD ..........................................30
Appendix B. Error Codes ..........................................31
Blanchet & Parent Experimental PAGE 3
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
1. Introduction
This document first describes the TSP framework, the protocol
details, and the different profiles used. It then describes the
applicability of TSP in different environments, some of which were
described in the v6ops scenario documents.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC 2119].
2. Description of the TSP Framework
Tunnel Setup Protocol (TSP) is a signaling protocol to set up tunnel
parameters between two tunnel endpoints. TSP is implemented as a
tiny client code in the requesting tunnel endpoint. The other
endpoint is the server that will set up the tunnel service. TSP uses
XML [W3C.REC-xml-2004] basic messaging over TCP or UDP. The use of
XML gives extensibility and easy option processing.
TSP negotiates tunnel parameters between the two tunnel endpoints.
Parameters that are always negotiated are:
o Authentication of the users, using any kind of authentication
mechanism (through Simple Authentication and Security Layer (SASL)
[RFC 4422]) including anonymous
o Tunnel encapsulation:
* IPv6 over IPv4 tunnels [RFC 4213]
* IPv4 over IPv6 tunnels [RFC 2473]
* IPv6 over UDP-IPv4 tunnels for NAT traversal
o IP address assignment for the tunnel endpoints
o DNS registration of the IP endpoint address (AAAA)
Other tunnel parameters that may be negotiated are:
o Tunnel keep-alive
o IPv6 prefix assignment when the client is a router
o DNS delegation of the inverse tree, based on the IPv6 prefix
assigned
Blanchet & Parent Experimental PAGE 4
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
o Routing protocols
The tunnel encapsulation can be explicitly specified by the client,
or can be determined during the TSP exchange by the broker. The
latter is used to detect the presence of NAT in the path and select
IPv6 over UDP-IPv4 encapsulation.
The TSP connection can be established between two nodes, where each
node can control a tunnel endpoint.
The nodes involved in the framework are:
1. the TSP client
2. the client tunnel endpoint
3. the TSP server
4. the server tunnel endpoint
1,3, and 4 form the tunnel broker model [RFC 3053], where 3 is the
tunnel broker and 4 is the tunnel server (Figure 1). The tunnel
broker may control one or many tunnel servers.
In its simplest model, one node is the client configured as a tunnel
endpoint (1 and 2 on the same node), and the second node is the
server configured as the other tunnel endpoint (3 and 4 on the same
node). This model is shown in Figure 2:
_______________
| TUNNEL BROKER |--> Databases (DNS)
| |
| TSP |
| SERVER |
|_______________|
| |
__________ | | ________
| | | | | |
| TSP |--[TSP]-- +---------| |
| CLIENT | | TUNNEL |--[NETWORK]--
[HOST]--| |<==[CONFIGURED TUNNEL]==>| SERVER |
|___________| | |
|________|
Figure 1: Tunnel Setup Protocol Used on Tunnel Broker Model
Blanchet & Parent Experimental PAGE 5
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
___________ ________
| | | TSP |
| TSP |-----------[TSP]---------| SERVER |
| CLIENT | | |--[NETWORK]--
[HOST]--| |<==[CONFIGURED TUNNEL]==>| TUNNEL |
|___________| | SERVER |
|________|
Figure 2: Tunnel Setup Protocol Used on Tunnel Server Model
From the point of view of an operating system, TSP is implemented as
a client application that is able to configure network parameters of
the operating system.
2.1. NAT Discovery
TSP is also used to discover if a NAT is in the path. In this
discovery mode, the client sends a TSP message over UDP, containing
its tunnel request information (such as its source IPv4 address) to
the TSP server. The TSP server compares the IPv4 source address of
the packet with the address in the TSP message. If they differ, one
or many IPv4 NATs are in the path.
If an IPv4 NAT is discovered, then IPv6 over UDP-IPv4 tunnel
encapsulation is selected. Once the TSP signaling is done, the
tunnel is established over the same UDP channel used for TSP, so the
same NAT address-port mapping is used for both the TSP session and
the IPv6 traffic. If no IPv4 NAT is detected in the path by the TSP
server, then IPv6 over IPv4 encapsulation is used.
A keep-alive mechanism is also included to keep the NAT mapping
active.
The IPv4 NAT discovery builds the most effective tunnel for all
cases, including in a dynamic situation where the client moves.
2.2. Any Encapsulation
TSP is used to negotiate IPv6 over IPv4 tunnels, IPv6 over UDP-IPv4
tunnels, and IPv4 over IPv6 tunnels. IPv4 over IPv6 tunnels is used
in the Dual-Stack Transition Mechanism (DSTM) together with TSP
[DSTM].
2.3. Mobility
When a node moves to a different IP network (i.e., change of its IPv4
address when doing IPv6 over IPv4 encapsulation), the TSP client
reconnects automatically to the broker to re-establish the tunnel
Blanchet & Parent Experimental PAGE 6
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
(keep-alive mechanism). On the IPv6 layer, if the client uses user
authentication, the same IPv6 address and prefix are kept and re-
established, even if the IPv4 address or tunnel encapsulation type
changes.
3. Advantages of TSP
o Tunnels established by TSP are static tunnels, which are more
secure than automated tunnels [RFC 3964]; no third-party relay
required.
o Stability of the IP address and prefix, enabling applications
needing stable address to be deployed and used. For example, when
tunneling IPv6, there is no dependency on the underlying IPv4
address.
o Prefix assignment supported. Can use provider address space.
o Signaling protocol flexible and extensible (XML, SASL)
o One solution to many encapsulation techniques: IPv6 in IPv4, IPv4
in IPv6, IPv6 over UDP over IPv4. Can be extended to other
encapsulation types, such as IPv6 in IPv6.
o Discovery of IPv4 NAT in the path, establishing the most optimized
tunneling technique depending on the discovery.
4. Protocol Description
4.1. Terminology
Tunnel Broker: In a tunnel broker model, the broker is taking charge
of all communication between tunnel servers (TSs) and tunnel
clients (TCs). Tunnel clients query brokers for a tunnel and the
broker finds a suitable tunnel server, asks the tunnel server to
set up the tunnel, and sends the tunnel information to the tunnel
Client.
Tunnel Server: Tunnel servers are providing the specific tunnel
service to a tunnel client. It can receive the tunnel request
from a tunnel broker (as in the tunnel broker model) or directly
from the tunnel client. The tunnel server is the tunnel endpoint.
Tunnel Client: The tunnel client is the entity that needs a tunnel
for a particular service or connectivity. A tunnel client can be
either a host or a router. The tunnel client is the other tunnel
endpoint.
Blanchet & Parent Experimental PAGE 7
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
v6v4: IPv6-over-IPv4 tunnel encapsulation
v6udpv4: IPv6-over-UDP-over-IPv4 tunnel encapsulation
v4v6: IPv4-over-IPv6 tunnel encapsulation
4.2. Topology
The following diagrams describe typical TSP scenarios. The goal is
to establish a tunnel between tunnel client and tunnel server.
4.3. Overview
The Tunnel Setup Protocol is initiated from a client node to a tunnel
broker. The Tunnel Setup Protocol has three phases:
Authentication phase: The Authentication phase is when the tunnel
broker/server advertises its capability to a tunnel client and
when a tunnel client authenticate to the broker/server.
Command phase: The command phase is where the client requests or
updates a tunnel.
Response phase: The response phase is where the tunnel client
receives the request response from the tunnel broker/server, and
the client accepts or rejects the tunnel offered.
For each command sent by a tunnel client, there is an expected
response from the server.
After the response phase is completed, a tunnel is established as
requested by the client. If requested, periodic keep-alive packets
can be sent from the client to the server.
Blanchet & Parent Experimental PAGE 8
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
tunnel tunnel
client broker
+| Send version +
||---------------------------------> ||
|| Send capabilities ||
||<--------------------------------- +| Authentication
|| SASL authentication || phase
||<--------------------------------> ||
TSP || Authentication OK ||
signaling||<--------------------------------- +
|| Tunnel request || Command
||---------------------------------> || phase
|| Tunnel response +
||<--------------------------------- || Response
|| Tunnel acknowledge || phase
||---------------------------------> +
+| |
|| Tunnel established |
Data ||===================================|
phase || |
+| (keep-alive) |
Figure 3: Tunnel Setup Protocol Exchange
4.4. TSP Signaling
The following sections describe in detail the TSP and the different
phases in the TSP signaling.
4.4.1. Signaling Transport
TSP signaling can be transported over TCP or UDP, and over IPv4 or
IPv6. The tunnel client selects the transport according to the
tunnel encapsulation being requested. Figure 4 shows the transport
used for TSP signaling with possible tunnel encapsulation requested.
TSP signaling over UDP/v4 MUST be used if a v6 over UDP over IPv4
(v6udpv4) tunnel is to be requested (e.g., for NAT traversal).
Blanchet & Parent Experimental PAGE 9
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Tunnel
Encapsulation Valid Valid
Requested Transport Address family
------------------------------------------
v6anyv4 TCP UDP IPv4
v6v4 TCP UDP IPv4
v6udpv4 UDP IPv4
v4v6 TCP UDP IPv6
Figure 4: TSP Signaling Transport
Note that the TSP framework allows for other type of encapsulation to
be defined, such as IPv6 over Generic Routing Encapsulation (GRE) or
IPv6 over IPv6.
4.4.1.1. TSP Signaling over TCP
TSP over TCP is sent over port number 3653 (IANA assigned). TSP data
used during signaling is detailed in the next sections.
+------+-----------+----------+
| IP | TCP | TSP data |
| | port 3653 | |
+------+-----------+----------+
where IP is IPv4 or IPv6
Figure 5: Tunnel Setup Protocol Packet Format (TCP)
4.4.1.2. TSP Signaling over UDP/v4
While TCP provides the connection-oriented and reliable data delivery
features required during the TSP signaling session, UDP does not
offer any reliability. This reliability is added inside the TSP
session as an extra header at the beginning of the UDP payload.
+------+-----------+------------+----------+
| IPv4 | UDP | TSP header | TSP data |
| | port 3653 | | |
+------+-----------+------------+----------+
Figure 6: Tunnel Setup Protocol Packet Format (UDP)
The algorithm used to add reliability to TSP packets sent over UDP is
described in Section 22.5 of [UNP].
Blanchet & Parent Experimental PAGE 10
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0xF | Sequence Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| TSP data |
...
Figure 7: TSP Header for Reliable UDP
The 4-bit field (0-3) is set to 0xF. This marker is used by the
tunnel broker to identify a TSP signaling packet that is sent
after an IPv6 over UDP is established. This is explained in
Section 4.5.2
Sequence Number: 28-bit field. Set by the tunnel client. Value is
increased by one for every new packet sent to the tunnel broker.
The return packet from the broker contains the unaltered sequence
number.
Timestamp: 32-bit field. Set by the tunnel client. Generated from
the client local-time value. The return packet from the broker
contains the unaltered timestamp.
TSP data: Same as in the TCP/v4 case. Content described in later
sections.
The TSP client builds its UDP packet as described above and sends it
to the tunnel broker. When the tunnel broker responds, the same
values for the sequence number and timestamp MUST be sent back to the
client. The TSP client can use the timestamp to determine the
retransmission timeout (current time minus the packet timestamp).
The client SHOULD retransmit the packet when the retransmission
timeout is reached. The retransmitted packet MUST use the same
sequence number as the original packet so that the server can detect
duplicate packets. The client SHOULD use exponential backoff when
retransmitting packets to avoid network congestion.
4.4.2. Authentication Phase
The authentication phase has 3 steps:
o Client's protocol version identification
Blanchet & Parent Experimental PAGE 11
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
o Server's capability advertisement
o Client authentication
When a TCP or UDP session is established to a tunnel broker, the
tunnel client sends the current protocol version it is supporting.
The version number syntax is:
VERSION=2.0.0 CR LF
Version 2.0.0 is the version number of this specification. Version
1.0.0 was defined in earlier documents.
If the server doesn't support the protocol version, it sends an error
message and closes the session. The server can optionally send a
server list that may support the protocol version of the client.
Example of an unsupported client version (without a server list):
-- Successful TCP Connection --
C:VERSION=0.1 CR LF
S:302 Unsupported client version CR LF
-- Connection closed --
Figure 8: Example of Unsupported Client Version
Example of a version not supported (with a server list):
-- Successful TCP Connection --
C:VERSION=1.1 CR LF
S:1302 Unsupported client version CR LF
<tunnel action="list" type="broker">
<broker>
<address type="ipv4">1.2.3.4</address>
</broker>
<broker>
<address type="dn">ts1.isp1.com</address>
</broker>
</tunnel>
-- Connection closed --
Figure 9: Example of Unsupported Client Version, with Server
Redirection
If the server supports the version sent by the client, then the
server sends a list of the capabilities supported for authentication
and tunnels.
Blanchet & Parent Experimental PAGE 12
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
Tunnel types must be registered with IANA and their profiles are
defined in Section 7. Authentication is done using SASL [RFC 4422].
Each authentication mechanism should be a registered SASL mechanism.
Description of such mechanisms is not in the scope of this document.
The tunnel client can then choose to close the session if none of the
capabilities fit its needs. If the tunnel client chooses to
continue, it authenticates to the server using one of the advertised
mechanisms using SASL. If the authentication fails, the server sends
an error message and closes the session.
The example in Figure 10 shows a failed authentication where the
tunnel client requests an anonymous authentication that is not
supported by the server.
Note that linebreaks and indentation within a "C:" or "S:" are
editorial and not part of the protocol.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:300 Authentication failed CR LF
Figure 10: Example of Failed Authentication
Figure 11 shows a successful anonymous authentication.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Success CR LF
Figure 11: Successful Anonymous Authentication
Blanchet & Parent Experimental PAGE 13
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Digest-MD5 authentication with SASL follows [RFC 2831]. Figure 12
shows a successful digest-MD5 SASL authentication.
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS AUTH=PLAIN
AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE DIGEST-MD5 CR LF
S:cmVhbG09aGV4b3Msbm9uY2U9MTExMzkwODk2OCxxb3A9YXV0aCxhbGdvcml0aG09bWQ
1LXNlc3MsY2hhcnNldD11dGY4
C:Y2hhcnNldD11dGY4LHVzZXJuYW1lPSJ1c2VybmFtZTEiLHJlYWxtPSJoZXhvcyIsbm9
uY2U9IjExMTM5MDg5NjgiLG5jPTAwMDAwMDAxLGNub25jZT0iMTExMzkyMzMxMSIsZG
lnZXN0LXVyaT0idHNwL2hleG9zIixyZXNwb25zZT1mOGU0MmIzYzUwYzU5NzcxODUzZ
jYyNzRmY2ZmZDFjYSxxb3A9YXV0aA==
S:cnNwYXV0aD03MGQ1Y2FiYzkyMzU1NjhiZTM4MGJhMmM5MDczODFmZQ==
S:200 Success CR LF
Figure 12: Successful Digest-MD5 Authentication
The base64-decoded version of the SASL exchange is:
S:realm="hexos",nonce="1113908968",qop="auth",algorithm=md5-sess,
charset=utf8
C:charset=utf8,username="username1",realm="hexos",nonce="1113908968",
nc=00000001,cnonce="1113923311",digest-uri="tsp/hexos",
response=f8e42b3c50c59771853f6274fcffd1ca,qop=auth
S:rspauth=70d5cabc9235568be380ba2c907381fe
Once the authentication succeeds, the server sends a success return
code and the protocol enters the Command phase.
4.4.3. Command and Response Phase
The Command phase is where the tunnel client sends a tunnel request
or a tunnel update to the server. In this phase, commands are sent
as XML messages. The first line is a "Content-length" directive that
indicates the size of the following XML message. When the server
sends a response, the first line is the "Content-length" directive,
the second is the return code, and third one is the XML message, if
any. The "Content-length" is calculated from the first character of
the return code line to the last character of the XML message,
inclusively.
Spaces can be inserted freely.
Blanchet & Parent Experimental PAGE 14
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
-- UDP session established --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=ANONYMOUS
AUTH=PLAIN AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Success CR LF
C:Content-length: 205 CR LF
<tunnel action="create" type="v6udpv4">
<client>
<address type="ipv4">192.0.2.135</address>
<keepalive interval="30"></keepalive>
</client>
</tunnel> CR LF
S:Content-length: 501 CR LF
200 Success CR LF
<tunnel action="info" type="v6udpv4" lifetime="604800">
<server>
<address type="ipv4">192.0.2.115</address>
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b2
</address>
</server>
<client>
<address type="ipv4">192.0.2.135</address>
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b3
</address>
<keepalive interval="30">
<address type="ipv6">
2001:db8:8000:0000:0000:0000:0000:38b2
</address>
</keepalive>
</client>
</tunnel> CR LF
C:Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 13: Example of a Command/Response Sequence
The example in Figure 13 shows a client requesting an anonymous
v6udpv4 tunnel, indicating that a keep-alive packet will be sent
every 30 seconds. The tunnel broker responds with the tunnel
Blanchet & Parent Experimental PAGE 15
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
parameters and indicates its acceptance of the keep-alive period
(Section 4.6). Finally, the client sends an accept message to the
server.
Once the accept message has been sent, the server and client
configure their tunnel endpoint based on the negotiated tunnel
parameters.
4.5. Tunnel Establishment
4.5.1. IPv6-over-IPv4 Tunnels
Once the TSP signaling is complete, a tunnel can be established on
the tunnel server and client node. If a v6v4 tunnel has been
negotiated, then an IPv6-over-IPv4 tunnel [RFC 4213] is established
using the operating system tunneling interface. On the client node,
this is accomplished by the TSP client calling the appropriate OS
commands or system calls.
4.5.2. IPv6-over-UDP Tunnels
If a v6udpv4 tunnel is configured, the same source/destination
address and port used during the TSP signaling are used to configure
the v6udpv4 tunnel. If a NAT is in the path between the TSP client
and the tunnel broker, the TSP signaling session will have created a
UDP state in the NAT. By reusing the same UDP socket parameters to
transport IPv6, the traffic will flow across the NAT using the same
state.
+------+-----------+--------+
| IPv4 | UDP | IPv6 |
| hdr. | port 3653 | |
+------+-----------+--------+
Figure 14: IPv6 Transport over UDP
At any time, a client may re-establish a TSP signaling session. The
client disconnects the current tunnel and starts a new TSP signaling
session as described in Section 4.4.1.2. If a NAT is present and the
new TSP session uses the same UDP mapping in the NAT as for the
tunnel, the tunnel broker will need to disconnect the client tunnel
before the client can establish a new TSP session.
4.6. Tunnel Keep-Alive
A TSP client may select to send periodic keep-alive messages to the
server in order to maintain its tunnel connectivity. This allows the
client to detect network changes and enable automatic tunnel
Blanchet & Parent Experimental PAGE 16
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
re-establishment. In the case of IPv6-over-UDP tunnels, periodic
keep-alive messages can help refresh the connection state in a NAT if
such a device is in the tunnel path.
For IPv6-over-IPv4 and IPv6-over-UDP tunnels, the keep-alive message
is an ICMPv6 echo request [RFC 4443] sent from the client to the
tunnel server. The IPv6 destination address of the echo message MUST
be the address from the 'keepalive' element sent in the tunnel
response during the TSP signaling (Section 4.4.3). The echo message
is sent over the configured tunnel.
The tunnel server responds to the ICMPv6 echo requests and can keep
track of which tunnel is active. Any client traffic can also be used
to verify if the tunnel is active. This can be used by the broker to
disconnect tunnels that are no longer in use.
The broker can send a different keep-alive interval from the value
specified in the client request. The client MUST conform to the
broker-specified keep-alive interval. The client SHOULD apply a
random "jitter" value to avoid synchronization of keep-alive messages
from many clients to the server [FJ93]. This is achieved by using an
interval value in the range of [0.75T - T], where T is the keep-alive
interval specified by the server.
4.7. XML Messaging
This section describes the XML messaging used in the TSP signaling
during the command and response phase. The XML elements and
attributes are listed in the DTD (Appendix A).
4.7.1. Tunnel
The client and server use the tunnel token with an action attribute.
Valid actions for this profile are: 'create', 'delete', 'info',
'accept', and 'reject'.
create: action used to request a new tunnel or update an existing
tunnel. Sent by the tunnel client.
delete: action used to remove an existing tunnel from the server.
Sent by the tunnel client.
info: action used to request current properties of an existing
tunnel. This action is also used by the tunnel broker to send
tunnel parameters following a client 'create' action.
Blanchet & Parent Experimental PAGE 17
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
accept: action used by the client to acknowledge the server that the
tunnel parameters are accepted. The client will establish a
tunnel.
reject: action used by the client to signal the server that the
tunnel parameters offered are rejected and no tunnel will be
established.
The tunnel 'lifetime' attribute is set by the tunnel broker and
specifies the lifetime of the tunnel in minutes. The lifetime is an
administratively set value. When a tunnel lifetime has expired, it
is disconnected on the tunnel server.
The 'tunnel' message contains three elements:
<client>: Client's information
<server>: Server's information
<broker>: List of other servers
4.7.2. Client Element
The 'client' element contains 3 sub-elements: 'address', 'router',
and 'keepalive'. These elements are used to describe the client
request and will be used by the server to create the appropriate
tunnel. The client element is the only element sent by a client.
The 'address' element is used to identify the client IP endpoint of
the tunnel. When tunneling over IPv4, the client MUST send only its
IPv4 address to the server. When tunneling over IPv6, the client
MUST only send its IPv6 address to the server.
The broker then returns the assigned IPv6 or IPv4 address endpoint
and domain name inside the 'client' element when the tunnel is
created or updated. If supported by the broker, the 'client' element
MAY contain the registered DNS name for the address endpoint assigned
to the client.
Optionally, a client MAY send a 'router' element to ask for a prefix
delegation.
Optionally, a client MAY send a 'keepalive' element that contains the
keep-alive time interval requested by the client.
Blanchet & Parent Experimental PAGE 18
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
4.7.3. Server Element
The 'server' element contains two elements: 'address' and 'router'.
These elements are used to describe the server's tunnel endpoint.
The 'address' element is used to provide both IPv4 and IPv6 addresses
of the server's tunnel endpoint, while the 'router' element provides
information for the routing method chosen by the client.
4.7.4. Broker Element
The 'broker' element is used by a tunnel broker to provide an
alternate list of brokers to a client in the case where the server is
not able to provide the requested tunnel.
The 'broker' element contains an 'address' element or a series of
'address' elements.
5. Tunnel Request Examples
This section presents multiple examples of requests.
5.1. Host Tunnel Request and Reply
A simple tunnel request consist of a 'tunnel' element that contains
only an 'address' element. The tunnel action is 'create', specifying
a 'v6v4' tunnel encapsulation type. The response sent by the tunnel
broker is an 'info' action. Note that the registered Fully-Qualified
Domain Name (FQDN) of the assigned client IPv6 address is also
returned to the tunnel client.
Blanchet & Parent Experimental PAGE 19
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
-- Successful TCP Connection --
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 AUTH=ANONYMOUS CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:200 Authentication successful CR LF
C:Content-length: 123 CR LF
<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">1.1.1.1</address>
</client>
</tunnel> CR LF
S: Content-length: 234 CR LF
200 OK CR LF
<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0000
</address>
</server>
<client>
<address type="ipv4">1.1.1.1</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
<address type="dn">userid.domain</address>
</client>
</tunnel> CR LF
C: Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 15: Simple Tunnel Request Made by a Client
5.2. Router Tunnel Request with a /48 Prefix Delegation and Reply
A tunnel request with a prefix consists of a 'tunnel' element that
contains an 'address' element and a 'router' element. The 'router'
element also contains the 'dns_server' element that is used to
request a DNS delegation of the assigned IPv6 prefix. The
'dns_server' element lists the IP address of the DNS servers to be
registered for the reverse-mapping zone.
Blanchet & Parent Experimental PAGE 20
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Tunnel request with prefix and static routes.
C: Content-length: 234 CR LF
<tunnel action="create" type="v6v4">
<client>
<address type="ipv4">192.0.2.9</address>
<router>
<prefix length="48"/>
<dns_server>
<address type="ipv4">192.0.2.5</address>
<address type="ipv4">192.0.2.4</address>
<address type="ipv6">2001:db8::1</address>
</dns_server>
</router>
</client>
</tunnel> CR LF
S: Content-length: 234 CR LF
200 OK CR LF
<tunnel action="info" type="v6v4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0000
</address>
</server>
<client>
<address type="ipv4">192.0.2.9</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
<address type="dn">userid.domain</address>
<router>
<prefix length="48">2001:db8:c18:1234::</prefix>
<dns_server>
<address type="ipv4">192.0.2.5</address>
<address type="ipv4">192.0.2.4</address>
<address type="ipv6">2001:db8::1</address>
</dns_server>
</router>
</client>
</tunnel> CR LF
C: Content-length: 35 CR LF
<tunnel action="accept"></tunnel> CR LF
Figure 16: Tunnel Request with Prefix and DNS Delegation
Blanchet & Parent Experimental PAGE 21
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
5.3. IPv4 over IPv6 Tunnel Request
This is similar to the previous 'create' action, but with the tunnel
type is set to 'v4v6'.
-- Successful TCP Connection --
C:VERSION=1.0 CR LF
S:CAPABILITY TUNNEL=V4V6 AUTH=DIGEST-MD5 AUTH=ANONYMOUS
CR LF
C:AUTHENTICATE ANONYMOUS CR LF
S:OK Authentication successful CR LF
C:Content-length: 228 CR LF
<tunnel action="create" type="v4v6">
<client>
<address type="ipv6">
2001:db8:0c18:ffff:0000:0000:0000:0001
</address>
</client>
</tunnel> CR LF
Figure 17: Simple Tunnel Request Made by a Client
If the allocation request is accepted, the broker will acknowledge
the allocation to the client by sending a 'tunnel' element with the
attribute 'action' set to 'info', 'type' set to 'v4v6' and the
'lifetime' attribute set to the period of validity or lease time of
the allocation. The 'tunnel' element contains 'server' and 'client'
elements.
Blanchet & Parent Experimental PAGE 22
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
S: Content-length: 370 CR LF
200 OK CR LF
<tunnel action="info" type="v4v6" lifetime="1440">
<server>
<address type="ipv4" length="30">
192.0.2.2
</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</server>
<client>
<address type="ipv4" length="30">
192.0.2.1
</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0001
</address>
</client>
</tunnel> CR LF
Figure 18: IPv4 over IPv6 Tunnel Response
In DSTM [DSTM] terminology, the DSTM server is the TSP broker and the
Tunnel Endpoint (TEP) is the tunnel server.
5.4. NAT Traversal Tunnel Request
When a client is capable of both IPv6 over IPv4 and IPv6 over UDP
over IPv4 encapsulation, it can request the broker, by using the
"v6anyv4" tunnel mode, to determine if it is behind a NAT and to send
the appropriate tunnel encapsulation mode as part of the response.
The client can also explicitly request an IPv6 over UDP over IPv4
tunnel by specifying "v6udpv4" in its request.
In the following example, the client informs the broker that it
requests to send keep-alives every 30 seconds. In its response, the
broker accepted the client-suggested keep-alive interval, and the
IPv6 destination address for the keep-alive packets is specified.
Blanchet & Parent Experimental PAGE 23
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
C:VERSION=2.0.0 CR LF
S:CAPABILITY TUNNEL=V6V4 TUNNEL=V6UDPV4 AUTH=DIGEST-MD5 CR LF
C:AUTHENTICATE ... CR LF
S:200 Authentication successful CR LF
C:Content-length: ... CR LF
<tunnel action="create" type="v6anyv4">
<client>
<address type="ipv4">10.1.1.1</address>
<keepalive interval="30"></keepalive>
</client>
</tunnel> CR LF
S: Content-length: ... CR LF
200 OK CR LF
<tunnel action="info" type="v6udpv4" lifetime="1440">
<server>
<address type="ipv4">192.0.2.114</address>
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</server>
<client>
<address type="ipv4">10.1.1.1</address>
<address type="ipv6">
2001:db8:c18:ffff::0000:0000:0000:0003
</address>
<keepalive interval="30">
<address type="ipv6">
2001:db8:c18:ffff:0000:0000:0000:0002
</address>
</keepalive>
</client>
</tunnel> CR LF
Figure 19: Tunnel Request Using v6anyv4 Mode
6. Applicability of TSP in Different Networks
This section describes the applicability of TSP in different
networks.
6.1. Provider Networks with Enterprise Customers
In a provider network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the enterprise
customers, before a full IPv6 native infrastructure is built. In
order to start deploying in a controlled manner and to give
enterprise customers a prefix, the TSP framework is used. The TSP
server can be in the core, in the aggregation points or in the Points
Blanchet & Parent Experimental PAGE 24
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
of Presence (PoPs) to offer the service to the customers. IPv6 over
IPv4 encapsulation can be used. If the customers are behind an IPv4
NAT, then IPv6 over UDP-IPv4 encapsulation can be used. TSP can be
used in combination with other techniques.
6.2. Provider Networks with Home/Small Office Customers
In a provider network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the home/small
office customers, before a full IPv6 native infrastructure is built.
The small networks such as Home/Small offices have a non-upgradable
gateway with NAT. TSP with NAT traversal is used to offer IPv6
connectivity and a prefix to the internal network.
Automation of the prefix assignment and DNS delegation, done by TSP,
is a very important feature for a provider in order to substantially
decrease support costs. The provider can use the same
Authentication, Authorization, and Accounting (AAA) database that is
used to authenticate the IPv4 broadband users. Customers can deploy
home IPv6 networks without any intervention of the provider support
people.
With the NAT discovery function of TSP, providers can use the same
TSP infrastructure for both NAT and non-NAT parts of the network.
6.3. Enterprise Networks
In an enterprise network where IPv4 is dominant, a tunneled
infrastructure can be used to provide IPv6 services to the IPv6
islands (hosts or networks) inside the enterprise, before a full IPv6
native infrastructure is built [RFC 4057]. TSP can be used to give
IPv6 connectivity, prefix, and routing for the islands. This gives
the enterprise a fully controlled deployment of IPv6 while
maintaining automation and permanence of the IPv6 assignments to the
islands.
6.4. Wireless Networks
In a wireless network where IPv4 is dominant, hosts and networks move
and change IPv4 address. TSP enables the automatic re-establishment
of the tunnel when the IPv4 address changes.
In a wireless network where IPv6 is dominant, hosts and networks
move. TSP enables the automatic re-establishment of the IPv4 over
IPv6 tunnel.
Blanchet & Parent Experimental PAGE 25
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
6.5. Unmanaged Networks
An unmanaged network is where no network manager or staff is
available to configure network devices [RFC 3904]. TSP is
particularly useful in this context where automation of all necessary
information for the IPv6 connectivity is handled by TSP: tunnel
endpoint parameters, prefix assignment, DNS delegation, and routing.
An unmanaged network may (or may not) be behind a NAT. With the NAT
discovery function, TSP works automatically in both cases.
6.6. Mobile Hosts and Mobile Networks
Mobile hosts are common and used. Laptops moving from wireless,
wired in an office, home, etc., are examples. They often have IPv4
connectivity, but not necessarily IPv6. The TSP framework enables
the mobile hosts to have IPv6 connectivity wherever they are, by
having the TSP client send updated information of the new environment
to the TSP server, when a change occurs. Together with NAT discovery
and traversal, the mobile host can always be IPv6 connected wherever
it is.
Mobile here means only the change of IPv4 address. Mobile-IP
mechanisms and fast hand-off take care of additional constraints in
mobile environments.
Mobile networks share the applicability of the mobile hosts.
Moreover, in the TSP framework, they also keep their prefix
assignment and can control the routing. NAT discovery can also be
used.
7. IANA Considerations
A tunnel type registry has been created by IANA. The following
strings are defined in this document:
o "v6v4" for IPv6 in IPv4 encapsulation (using IPv4 protocol 41)
o "v6udpv4" for IPv6 in UDP in IPv4 encapsulation
o "v6anyv4" for IPv6 in IPv4 or IPv6 in UDP in IPv4 encapsulation
o "v4v6" for IPv4 in IPv6 encapsulation
Registration of a new tunnel type can be obtained on a first come,
first served policy [RFC 5226]. A new registration should provide a
point of contact, the tunnel type string, and a brief description on
the applicability.
Blanchet & Parent Experimental PAGE 26
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
IANA assigned 3653 as the TSP port number.
8. Security Considerations
Authentication of the TSP session uses the SASL [RFC 4422] framework,
where the authentication mechanism is negotiated between the client
and the server. The framework uses the level of authentication
needed for securing the session, based on the policies.
Static tunnels are created when the TSP negotiation is terminated.
Static tunnels are not open gateways and exhibit less security issues
than automated tunnels. Static IPv6 in IPv4 tunnel security
considerations are described in [RFC 4213].
In order to help ensure that the traffic is traceable to its correct
source network, a tunnel server implementation should allow ingress
filtering on the user tunnel [RFC 3704].
A customer A behind a NAT can use a large number of (private) IPv4
addresses and/or source ports and request multiple v6udpv4 tunnels.
That would quickly saturate the tunnel server capacity. The tunnel
broker implementation should offer a way to throttle and limit the
number of tunnel established to the same IPv4 address.
9. Conclusion
The Tunnel Setup Protocol (TSP) is applicable in many environments,
such as: providers, enterprises, wireless, unmanaged networks, mobile
hosts, and networks. TSP gives the two tunnel endpoints the ability
to negotiate tunnel parameters, as well as prefix assignment, DNS
delegation and routing in an authenticated session. It also provides
an IPv4 NAT discovery function by using the most effective
encapsulation. It also supports the IPv4 mobility of the nodes.
10. Acknowledgements
This document is the merge of many previous documents about TSP.
Octavio Medina has contributed to an earlier document (IPv4 in IPv6).
Thanks to the following people for comments on improving and
clarifying this document: Pekka Savola, Alan Ford, Jeroen Massar, and
Jean-Francois Tremblay.
Blanchet & Parent Experimental PAGE 27
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
11. References
11.1. Normative References
[RFC 2119] Bradner, S., "Key words for use in RFCs to
Indicate Requirement Levels", BCP 14, RFC 2119,
March 1997.
[RFC 2473] Conta, A. and S. Deering, "Generic Packet
Tunneling in IPv6 Specification", RFC 2473,
December 1998.
[RFC 2831] Leach, P. and C. Newman, "Using Digest
Authentication as a SASL Mechanism", RFC 2831,
May 2000.
[RFC 4213] Nordmark, E. and R. Gilligan, "Basic Transition
Mechanisms for IPv6 Hosts and Routers", RFC 4213,
October 2005.
[RFC 4422] Melnikov, A. and K. Zeilenga, "Simple
Authentication and Security Layer (SASL)",
RFC 4422, June 2006.
[RFC 4443] Conta, A., Deering, S., and M. Gupta, "Internet
Control Message Protocol (ICMPv6) for the
Internet Protocol Version 6 (IPv6)
Specification", RFC 4443, March 2006.
[W3C.REC-xml-2004] Yergeau, F., Paoli, J., Sperberg-McQueen, C.,
Bray, T., and E. Maler, "Extensible Markup
Language (XML) 1.0 (Third Edition)", W3C REC REC-
xml-20040204, February 2004.
11.2. Informative References
[DSTM] Bound, J., Toutain, L., and JL. Richier, "Dual
Stack IPv6 Dominant Transition Mechanism", Work
in Progress, October 2005.
[FJ93] Floyd, S. and V. Jacobson, "The Synchronization
of Periodic Routing Messages", Proceedings of
ACM SIGCOMM, September 1993.
[RFC 3053] Durand, A., Fasano, P., Guardini, I., and D.
Lento, "IPv6 Tunnel Broker", RFC 3053,
January 2001.
Blanchet & Parent Experimental PAGE 28
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
[RFC 3704] Baker, F. and P. Savola, "Ingress Filtering for
Multihomed Networks", BCP 84, RFC 3704,
March 2004.
[RFC 3904] Huitema, C., Austein, R., Satapati, S., and R.
van der Pol, "Evaluation of IPv6 Transition
Mechanisms for Unmanaged Networks", RFC 3904,
September 2004.
[RFC 3964] Savola, P. and C. Patel, "Security Considerations
for 6to4", RFC 3964, December 2004.
[RFC 4057] Bound, J., "IPv6 Enterprise Network Scenarios",
RFC 4057, June 2005.
[RFC 5226] Narten, T. and H. Alvestrand, "Guidelines for
Writing an IANA Considerations Section in RFCs",
BCP 26, RFC 5226, May 2008.
[UNP] Stevens, R., Fenner, B., and A. Rudoff, "Unix
Network Programming, 3rd edition", Addison
Wesley ISBN 0-13-141155-1, 2004.
Blanchet & Parent Experimental PAGE 29
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Appendix A. The TSP DTD
<?xml version="1.0"?>
<!DOCTYPE tunnel [
<!ELEMENT tunnel (server?,client?,broker?)>
<!ATTLIST tunnel action
(create|delete|info|accept|reject) #REQUIRED >
<!ATTLIST tunnel type
(v6v4|v4v6|v6anyv4|v6udpv4) #REQUIRED >
<!ATTLIST tunnel lifetime CDATA "1440" >
<!ELEMENT server (address+,router?)>
<!ELEMENT client (address+,router?)>
<!ELEMENT broker (address+)>
<!ELEMENT router (prefix?,dns_server?)>
<!ELEMENT dns_server (address+)>
<!ELEMENT prefix (#PCDATA)>
<!ATTLIST prefix length CDATA #REQUIRED>
<!ELEMENT address (#PCDATA)>
<!ATTLIST address type (ipv4|ipv6|dn) #REQUIRED>
<!ATTLIST address length CDATA "">
<!ELEMENT keepalive (address?)>
<!ATTLIST keepalive interval CDATA #REQUIRED>
]>
Figure 20: TSP DTD
Blanchet & Parent Experimental PAGE 30
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
Appendix B. Error Codes
Error codes are sent as a numeric value followed by a text message
describing the code, similar to SMTP. The codes are sent from the
broker to the client. The currently defined error codes are shown
below. Upon receiving an error, the client will display the
appropriate message to the user.
New error messages may be defined in the future. For
interoperability purpose, the error code range to use should be from
300 to 599.
The reply code 200 is used to inform the client that an action
successfully completed. For example, this reply code is used in
response to an authentication request and a tunnel creation request.
The server may redirect the client to another broker. The details on
how these brokers are known or discovered is beyond the scope of this
document. When a list of tunnel brokers follows the error code as a
referral service, then 1000 is added to the error code.
The predefined values are:
200 Success: Successful operation.
300 Authentication failed: Invalid userid, password, or
authentication mechanism.
301 No more tunnels available: The server has reached its capacity
limit.
302 Unsupported client version: The client version is not supported
by the server.
303 Unsupported tunnel type: The server does not provide the
requested tunnel type.
310 Server side error: Undefined server error.
500 Invalid request format or specified length: The received request
has invalid syntax or is truncated.
501 Invalid IPv4 address: The IPv4 address specified by the client
is invalid.
502 Invalid IPv6 address: The IPv6 address specified by the client
is invalid.
Blanchet & Parent Experimental PAGE 31
RFC 5572 Tunnel Setup Protocol (TSP) February 2010
506 IPv4 address already used for existing tunnel: An IPv6-over-IPv4
tunnel already exists using the same IPv4 address endpoints.
507 Requested prefix length cannot be assigned: The requested prefix
length cannot be allocated on the server.
521 Request already in progress: The client tunnel request is being
processed by the server. Temporary error.
530 Server too busy: Request cannot be processed, insufficient
resources. Temporary error.
Authors' Addresses
Marc Blanchet
Viagenie
2600 boul. Laurier, suite 625
Quebec, QC G1V 4W1
Canada
Phone: +1-418-656-9254
EMail: Marc.Blanchet@viagenie.ca
Florent Parent
Beon Solutions
Quebec, QC
Canada
Phone: +1 418 265 7357
EMail: Florent.Parent@beon.ca
Blanchet & Parent Experimental PAGE 32
IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)
RFC TOTAL SIZE: 60017 bytes
PUBLICATION DATE: Friday, February 19th, 2010
LEGAL RIGHTS: The IETF Trust (see BCP 78)
|